11,093 research outputs found

    Three flavour Quark matter in chiral colour dielectric model

    Get PDF
    We investigate the properties of quark matter at finite density and temperature using the nonlinear chiral extension of Colour Dielectric Model (CCM). Assuming that the square of the meson fields devlop non- zero vacuum expectation value, the thermodynamic potential for interacting three flavour matter has been calculated. It is found that and and remain zero in the medium whereas changes in the medium. As a result, uu and dd quark masses decrease monotonically as the temperature and density of the quark matter is increased.In the present model, the deconfinement density and temperature is found to be lower compared to lattice results. We also study the behaviour of pressure and energy density above critical temperature.Comment: Latex file. 5 figures available on request. To appear in Phys. Rev.

    27/32

    Full text link
    We show that when an N=2 SCFT flows to an N=1 SCFT via giving a mass to the adjoint chiral superfield in a vector multiplet with marginal coupling, the central charges a and c of the N=2 theory are related to those of the N=1 theory by a universal linear transformation. In the large N limit, this relationship implies that the central charges obey a_IR/a_UV=c_IR/c_UV=27/32. This gives a physical explanation to many examples of this number found in the literature, and also suggests the existence of a flow between some theories not previously thought to be connected.Comment: 3 pages. v2: references added, minor typos correcte

    Born-Infeld Type Extension of (Non-)Critical Gravity

    Full text link
    We consider the Born-Infeld type extension of (non-)critical gravity which is higher curvature gravity on Anti de-Sitter space with specific combinations of scalar curvature and Ricci tensor. This theory may also be viewed as a natural extension of three-dimensional Born-Infeld new massive gravity to arbitrary dimensions. We show that this extension is consistent with holographic cc-theorem and scalar graviton modes are absent in this theory. After showing that ghost modes in the theory can be truncated consistently by appropriate boundary conditions, we argue that the theory is classically equivalent to Einstein gravity at the non-linear level. Black hole solutions are discussed in the view point of the full non-linear classical equivalence between the theory and Einstein gravity. Holographic entanglement entropy in the theory is also briefly commented on.Comment: 1+13 pages, improvements in presentation, references added, accepted to PR

    Holographic Dual of BCFT

    Full text link
    We propose a holographic dual of a conformal field theory defined on a manifold with boundaries, i.e. boundary conformal field theory (BCFT). Our new holography, which may be called AdS/BCFT, successfully calculates the boundary entropy or g-function in two dimensional BCFTs and it agrees with the finite part of the holographic entanglement entropy. Moreover, we can naturally derive a holographic g-theorem. We also analyze the holographic dual of an interval at finite temperature and show that there is a first order phase transition.Comment: 5 pages, 3 figs, a reference added, typos corrected, to be published in PR

    Half-Life of 14^{14}O

    Get PDF
    We have measured the half-life of 14^{14}O, a superallowed (0+→0+)(0^{+} \to 0^{+}) β\beta decay isotope. The 14^{14}O was produced by the 12^{12}C(3^{3}He,n)14^{14}O reaction using a carbon aerogel target. A low-energy ion beam of 14^{14}O was mass separated and implanted in a thin beryllium foil. The beta particles were counted with plastic scintillator detectors. We find t1/2=70.696±0.052t_{1/2} = 70.696\pm 0.052 s. This result is 1.5σ1.5\sigma higher than an average value from six earlier experiments, but agrees more closely with the most recent previous measurement.Comment: 10 pages, 5 figure

    Strange quark matter: mapping QCD lattice results to finite baryon density by a quasi-particle model

    Full text link
    A quasi-particle model is presented which describes QCD lattice results for the 0, 2 and 4 quark-flavor equation of state. The results are mapped to finite baryo-chemical potentials. As an application of the model we make a prediction of deconfined matter with appropriate inclusion of strange quarks and consider pure quark stars.Comment: invited talk at Strangeness 2000, Berkeley; prepared version for the proceedings, 5 page

    pp Wave Big Bangs: Matrix Strings and Shrinking Fuzzy Spheres

    Get PDF
    We find pp wave solutions in string theory with null-like linear dilatons. These provide toy models of big bang cosmologies. We formulate Matrix String Theory in these backgrounds. Near the big bang ``singularity'', the string theory becomes strongly coupled but the Yang-Mills description of the matrix string is weakly coupled. The presence of a second length scale allows us to focus on a specific class of non-abelian configurations, viz. fuzzy cylinders, for a suitable regime of parameters. We show that, for a class of pp waves, fuzzy cylinders which start out big at early times dynamically shrink into usual strings at sufficiently late times.Comment: 29 pages, ReVTeX and AMSLaTeX. 4 Figures. v2: Typo corrected and reference adde

    Seeing a c-theorem with holography

    Full text link
    There is no known model in holography exhibiting a cc-theorem where the central charges of the dual CFT are distinct. We examine a holographic model of RG flows in a framework where the bulk gravity theory contains higher curvature terms. The latter allows us to distinguish the flow of the central charges aa and cc in the dual field theories in four dimensions. One finds that the flow of aa is naturally monotonic but that of cc is not. Extending the analysis of holographic RG flows to higher dimensions, we are led to formulate a novel c-theorem in arbitrary dimensions for a universal coefficient appearing in the entanglement entropy of the fixed point CFT's.Comment: 5 pages, 1 figure, v2: minor change
    • …
    corecore