57 research outputs found

    A class of integrable lattices and KP hierarchy

    Full text link
    We introduce a class of integrable ll-field first-order lattices together with corresponding Lax equations. These lattices may be represented as consistency condition for auxiliary linear systems defined on sequences of formal dressing operators. This construction provides simple way to build lattice Miura transformations between one-field lattice and ll-field (l2l\ge 2) ones. We show that the lattices pertained to above class is in some sense compatible with KP flows and define the chains of constrained KP Lax operators.Comment: LaTeX, 13 pages, accepted for publication in J. Phys. A: Math. Ge

    Darboux Transformations, Infinitesimal Symmetries and Conservation Laws for Nonlocal Two-Dimensional Toda Lattice

    Full text link
    The technique of Darboux transformation is applied to nonlocal partner of two-dimensional periodic A_{n-1} Toda lattice. This system is shown to admit a representation as the compatibility conditions of direct and dual overdetermined linear systems with quantized spectral parameter. The generalization of the Darboux transformation technique on linear equations of such a kind is given. The connections between the solutions of overdetermined linear systems and their expansions in series at singular points neighborhood are presented. The solutions of the nonlocal Toda lattice and infinite hierarchies of the infinitesimal symmetries and conservation laws are obtained.Comment: 12 pages, infinitesimal symmetries and conservation laws are adde

    On some class of reductions for Itoh-Narita-Bogoyavlenskii lattice

    Full text link
    We show a broad class of constraints compatible with Itoh-Narita-Bogoyavlenskii lattice hierarchy. All these constraints can be written in the form of discrete conservation law Ii+1=IiI_{i+1}=I_i with appropriate homogeneous polynomial discrete function I=I[a]I=I[a].Comment: 15 page

    Reductions of integrable lattices

    Full text link
    Based on the notion of Darboux-KP chain hierarchy and its invariant submanifolds we construct some class of constraints compatible with integrable lattices. Some simple examples are given.Comment: 17 page

    Kovalevski exponents and integrability properties in class A homogeneous cosmological models

    Get PDF
    Qualitative approach to homogeneous anisotropic Bianchi class A models in terms of dynamical systems reveals a hierarchy of invariant manifolds. By calculating the Kovalevski Exponents according to Adler - van Moerbecke method we discuss how algebraic integrability property is distributed in this class of models. In particular we find that algebraic nonintegrability of vacuum Bianchi VII_0 model is inherited by more general Bianchi VIII and Bianchi IX vacuum types. Matter terms (cosmological constant, dust and radiation) in the Einstein equations typically generate irrational or complex Kovalevski exponents in class A homogeneous models thus introducing an element of nonintegrability even though the respective vacuum models are integrable.Comment: arxiv version is already officia

    The Asymptotic Behaviour of Tilted Bianchi type VI0_0 Universes

    Full text link
    We study the asymptotic behaviour of the Bianchi type VI0_0 universes with a tilted γ\gamma-law perfect fluid. The late-time attractors are found for the full 7-dimensional state space and for several interesting invariant subspaces. In particular, it is found that for the particular value of the equation of state parameter, γ=6/5\gamma=6/5, there exists a bifurcation line which signals a transition of stability between a non-tilted equilibrium point to an extremely tilted equilibrium point. The initial singular regime is also discussed and we argue that the initial behaviour is chaotic for γ<2\gamma<2.Comment: 22 pages, 4 figures, to appear in CQ

    A dynamical systems approach to the tilted Bianchi models of solvable type

    Full text link
    We use a dynamical systems approach to analyse the tilting spatially homogeneous Bianchi models of solvable type (e.g., types VIh_h and VIIh_h) with a perfect fluid and a linear barotropic γ\gamma-law equation of state. In particular, we study the late-time behaviour of tilted Bianchi models, with an emphasis on the existence of equilibrium points and their stability properties. We briefly discuss the tilting Bianchi type V models and the late-time asymptotic behaviour of irrotational Bianchi VII0_0 models. We prove the important result that for non-inflationary Bianchi type VIIh_h models vacuum plane-wave solutions are the only future attracting equilibrium points in the Bianchi type VIIh_h invariant set. We then investigate the dynamics close to the plane-wave solutions in more detail, and discover some new features that arise in the dynamical behaviour of Bianchi cosmologies with the inclusion of tilt. We point out that in a tiny open set of parameter space in the type IV model (the loophole) there exists closed curves which act as attracting limit cycles. More interestingly, in the Bianchi type VIIh_h models there is a bifurcation in which a set of equilibrium points turn into closed orbits. There is a region in which both sets of closed curves coexist, and it appears that for the type VIIh_h models in this region the solution curves approach a compact surface which is topologically a torus.Comment: 29 page

    The Futures of Bianchi type VII0 cosmologies with vorticity

    Full text link
    We use expansion-normalised variables to investigate the Bianchi type VII0_0 model with a tilted γ\gamma-law perfect fluid. We emphasize the late-time asymptotic dynamical behaviour of the models and determine their asymptotic states. Unlike the other Bianchi models of solvable type, the type VII0_0 state space is unbounded. Consequently we show that, for a general non-inflationary perfect fluid, one of the curvature variables diverges at late times, which implies that the type VII0_0 model is not asymptotically self-similar to the future. Regarding the tilt velocity, we show that for fluids with γ<4/3\gamma<4/3 (which includes the important case of dust, γ=1\gamma=1) the tilt velocity tends to zero at late times, while for a radiation fluid, γ=4/3\gamma=4/3, the fluid is tilted and its vorticity is dynamically significant at late times. For fluids stiffer than radiation (γ>4/3\gamma>4/3), the future asymptotic state is an extremely tilted spacetime with vorticity.Comment: 23 pages, v2:references and comments added, typos fixed, to appear in CQ

    The late-time behaviour of vortic Bianchi type VIII Universes

    Full text link
    We use the dynamical systems approach to investigate the Bianchi type VIII models with a tilted γ\gamma-law perfect fluid. We introduce expansion-normalised variables and investigate the late-time asymptotic behaviour of the models and determine the late-time asymptotic states. For the Bianchi type VIII models the state space is unbounded and consequently, for all non-inflationary perfect fluids, one of the curvature variables grows without bound. Moreover, we show that for fluids stiffer than dust (1<γ<21<\gamma<2), the fluid will in general tend towards a state of extreme tilt. For dust (γ=1\gamma=1), or for fluids less stiff than dust (0<γ<10<\gamma< 1), we show that the fluid will in the future be asymptotically non-tilted. Furthermore, we show that for all γ1\gamma\geq 1 the universe evolves towards a vacuum state but does so rather slowly, ρ/H21/lnt\rho/H^2\propto 1/\ln t.Comment: 19 pages, 3 ps figures, v2:typos fixed, refs and more discussion adde

    The mixmaster universe: A chaotic Farey tale

    Full text link
    When gravitational fields are at their strongest, the evolution of spacetime is thought to be highly erratic. Over the past decade debate has raged over whether this evolution can be classified as chaotic. The debate has centered on the homogeneous but anisotropic mixmaster universe. A definite resolution has been lacking as the techniques used to study the mixmaster dynamics yield observer dependent answers. Here we resolve the conflict by using observer independent, fractal methods. We prove the mixmaster universe is chaotic by exposing the fractal strange repellor that characterizes the dynamics. The repellor is laid bare in both the 6-dimensional minisuperspace of the full Einstein equations, and in a 2-dimensional discretisation of the dynamics. The chaos is encoded in a special set of numbers that form the irrational Farey tree. We quantify the chaos by calculating the strange repellor's Lyapunov dimension, topological entropy and multifractal dimensions. As all of these quantities are coordinate, or gauge independent, there is no longer any ambiguity--the mixmaster universe is indeed chaotic.Comment: 45 pages, RevTeX, 19 Figures included, submitted to PR
    corecore