366 research outputs found

    Search for a vector-like quark T′ → tH via the diphoton decay mode of the Higgs boson in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF
    A search for the electroweak production of a vector-like quark T′, decaying to a top quark and a Higgs boson is presented. The search is based on a sample of proton-proton collision events recorded at the LHC at = 13 TeV, corresponding to an integrated luminosity of 138 fb−1. This is the first T′ search that exploits the Higgs boson decay to a pair of photons. For narrow isospin singlet T′ states with masses up to 1.1 TeV, the excellent diphoton invariant mass resolution of 1–2% results in an increased sensitivity compared to previous searches based on the same production mechanism. The electroweak production of a T′ quark with mass up to 960 GeV is excluded at 95% confidence level, assuming a coupling strength κT = 0.25 and a relative decay width Γ/MT′ < 5%

    Measurement of the Higgs boson inclusive and differential fiducial production cross sections in the diphoton decay channel with pp collisions at s \sqrt{s} = 13 TeV

    Get PDF
    The measurements of the inclusive and differential fiducial cross sections of the Higgs boson decaying to a pair of photons are presented. The analysis is performed using proton-proton collisions data recorded with the CMS detector at the LHC at a centre-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 137 fb1^{−1}. The inclusive fiducial cross section is measured to be σfidσ_{fid}=73.45.3+5.4^{+5.4}_{−5.3}(stat)2.2+2.4^{+2.4}_{−2.2}(syst) fb, in agreement with the standard model expectation of 75.4 ± 4.1 fb. The measurements are also performed in fiducial regions targeting different production modes and as function of several observables describing the diphoton system, the number of additional jets present in the event, and other kinematic observables. Two double differential measurements are performed. No significant deviations from the standard model expectations are observed

    Probing Heavy Majorana Neutrinos and the Weinberg Operator through Vector Boson Fusion Processes in Proton-Proton Collisions at √s = 13 TeV

    Get PDF
    The first search exploiting the vector boson fusion process to probe heavy Majorana neutrinos and the Weinberg operator at the LHC is presented. The search is performed in the same-sign dimuon final state using a proton-proton collision dataset recorded at √s=13  TeV, collected with the CMS detector and corresponding to a total integrated luminosity of 138  fb−1. The results are found to agree with the predictions of the standard model. For heavy Majorana neutrinos, constraints on the squared mixing element between the muon and the heavy neutrino are derived in the heavy neutrino mass range 50 GeV–25 TeV; for masses above 650 GeV these are the most stringent constraints from searches at the LHC to date. A first test of the Weinberg operator at colliders provides an observed upper limit at 95% confidence level on the effective μμ Majorana neutrino mass of 10.8 GeV

    Observation of Same-Sign WW Production from Double Parton Scattering in Proton-Proton Collisions at √s = 13 TeV

    Get PDF
    The first observation of the production of W±W± bosons from double parton scattering processes using same-sign electron-muon and dimuon events in proton-proton collisions is reported. The data sample corresponds to an integrated luminosity of 138  fb−1 recorded at a center-of-mass energy of 13 TeV using the CMS detector at the CERN LHC. Multivariate discriminants are used to distinguish the signal process from the main backgrounds. A binned maximum likelihood fit is performed to extract the signal cross section. The measured cross section for production of same-sign W bosons decaying leptonically is 80.7±11.2(stat) +9.5−8.6(syst)±12.1(model)  fb, whereas the measured fiducial cross section is 6.28±0.81(stat)±0.69(syst)±0.37(model)  fb. The observed significance of the signal is 6.2 standard deviations above the background-only hypothesis

    Search for Higgs Boson Decay to a Charm Quark-Antiquark Pair in Proton-Proton Collisions at √s = 13 TeV

    Get PDF
    A search for the standard model Higgs boson decaying to a charm quark-antiquark pair, H→c¯c, produced in association with a leptonically decaying V (W or Z) boson is presented. The search is performed with proton-proton collisions at √s=13  TeV collected by the CMS experiment, corresponding to an integrated luminosity of 138  fb−1. Novel charm jet identification and analysis methods using machine learning techniques are employed. The analysis is validated by searching for Z→c¯c in VZ events, leading to its first observation at a hadron collider with a significance of 5.7 standard deviations. The observed (expected) upper limit on σ(VH)B(H→c¯c) is 0.94 (0.50+0.22−0.15)pb at 95% confidence level (C.L.), corresponding to 14 (7.6+3.4−2.3) times the standard model prediction. For the Higgs-charm Yukawa coupling modifier, κc, the observed (expected) 95% C.L. interval is 1.1<|κc|<5.5 (|κc|<3.4), the most stringent constraint to date

    Measurements of the Higgs boson production cross section and couplings in the W boson pair decay channel in proton-proton collisions at s=13TeV\sqrt{s}=13\,\text {Te\hspace{-.08em}V}

    Get PDF
    Production cross sections of the standard model Higgs boson decaying to a pair of W bosons are measured in proton-proton collisions at a center-of-mass energy of 13Te\hspace{-.08em}V. The analysis targets Higgs bosons produced via gluon fusion, vector boson fusion, and in association with a W or Z boson. Candidate events are required to have at least two charged leptons and moderate missing transverse momentum, targeting events with at least one leptonically decaying W boson originating from the Higgs boson. Results are presented in the form of inclusive and differential cross sections in the simplified template cross section framework, as well as couplings of the Higgs boson to vector bosons and fermions. The data set collected by the CMS detector during 2016–2018 is used, corresponding to an integrated luminosity of 138fb−1. The signal strength modifier μ, defined as the ratio of the observed production rate in a given decay channel to the standard model expectation, is measured to be μ=0.95+0.10−0.09. All results are found to be compatible with the standard model within the uncertainties

    Measurement of the Higgs boson inclusive and differential fiducial production cross sections in the diphoton decay channel with pp collisions at s \sqrt{s} = 13 TeV

    Get PDF
    The measurements of the inclusive and differential fiducial cross sections of the Higgs boson decaying to a pair of photons are presented. The analysis is performed using proton-proton collisions data recorded with the CMS detector at the LHC at a centre-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 137 fb1^{−1}. The inclusive fiducial cross section is measured to be σfidσ_{fid}=73.45.3+5.4^{+5.4}_{−5.3}(stat)2.2+2.4^{+2.4}_{−2.2}(syst) fb, in agreement with the standard model expectation of 75.4 ± 4.1 fb. The measurements are also performed in fiducial regions targeting different production modes and as function of several observables describing the diphoton system, the number of additional jets present in the event, and other kinematic observables. Two double differential measurements are performed. No significant deviations from the standard model expectations are observed

    Searches for additional Higgs bosons and for vector leptoquarks in ττ final states in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF
    Three searches are presented for signatures of physics beyond the standard model (SM) in ττ final states in proton-proton collisions at the LHC, using a data sample collected with the CMS detector at s=13TeV\sqrt{s} = 13 TeV, corresponding to an integrated luminosity of 138 fb1^{−1}. Upper limits at 95% confidence level (CL) are set on the products of the branching fraction for the decay into ττ leptons and the cross sections for the production of a new boson ϕϕ, in addition to the H(125) boson, via gluon fusion (ggϕ)(ggϕ) or in association with b quarks, ranging from O(10pb)O(10 pb) for a mass of 60GeV60 GeV to 0.3 fb for a mass of 3.5TeV3.5 TeV each. The data reveal two excesses for ggϕggϕ production with local pp-values equivalent to about three standard deviations at mϕ=0.1mϕ = 0.1 and 1.2TeV1.2 TeV. In a search for tt-channel exchange of a vector leptoquark U1U_1, 95% CL upper limits are set on the dimensionless U1U_1 leptoquark coupling to quarks and ττ leptons ranging from 1 for a mass of 1TeV1 TeV to 6 for a mass of 5TeV5 TeV, depending on the scenario. In the interpretations of the Mh125M^{125}_h and Mh,EFT125M^{125}_{h,EFT} minimal supersymmetric SM benchmark scenarios, additional Higgs bosons with masses below 350GeV350 GeV are excluded at 95% CL

    Search for high-mass exclusive γγ → WW and γγ → ZZ production in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF

    Search for new heavy resonances decaying to WW, WZ, ZZ, WH, or ZH boson pairs in the all-jets final state in proton-proton collisions at √s = 13 TeV

    Get PDF
    A search for new heavy resonances decaying to WW, WZ, ZZ, WH, or ZH boson pairs in the all-jets final state is presented. The analysis is based on proton-proton collision data recorded by the CMS detector in 2016–2018 at a centre-of-mass energy of 13 TeV at the CERN LHC, corresponding to an integrated luminosity of 138 fb−1. The search is sensitive to resonances with masses between 1.3 and , decaying to bosons that are highly Lorentz-boosted such that each of the bosons forms a single large-radius jet. Machine learning techniques are employed to identify such jets. No significant excess over the estimated standard model background is observed. A maximum local significance of 3.6 standard deviations, corresponding to a global significance of 2.3 standard deviations, is observed at masses of 2.1 and 2.9 TeV. In a heavy vector triplet model, spin-1 and resonances with masses below are excluded at the 95% confidence level (CL). These limits are the most stringent to date. In a bulk graviton model, spin-2 gravitons and spin-0 radions with masses below 1.4 and , respectively, are excluded at 95% CL. Production of heavy resonances through vector boson fusion is constrained with upper cross section limits at 95% CL as low as 0.1 fb
    corecore