764 research outputs found

    Feedback control of thermal lensing in a high optical power cavity

    Get PDF
    This paper reports automatic compensation of strong thermal lensing in a suspended 80 m optical cavity with sapphire test mass mirrors. Variation of the transmitted beam spot size is used to obtain an error signal to control the heating power applied to the cylindrical surface of an intracavity compensation plate. The negative thermal lens created in the compensation plate compensates the positive thermal lens in the sapphire test mass, which was caused by the absorption of the high intracavity optical power. The results show that feedback control is feasible to compensate the strong thermal lensing expected to occur in advanced laser interferometric gravitational wave detectors. Compensation allows the cavity resonance to be maintained at the fundamental mode, but the long thermal time constant for thermal lensing control in fused silica could cause difficulties with the control of parametric instabilities.This research was supported by the Australian Research Council and the Department of Education, Science and Training and by the U.S. National Science Foundation, through LIGO participation in the HOPF

    Compensation of Strong Thermal Lensing in High Optical Power Cavities

    Get PDF
    In an experiment to simulate the conditions in high optical power advanced gravitational wave detectors such as Advanced LIGO, we show that strong thermal lenses form in accordance with predictions and that they can be compensated using an intra-cavity compensation plate heated on its cylindrical surface. We show that high finesse ~1400 can be achieved in cavities with internal compensation plates, and that the cavity mode structure can be maintained by thermal compensation. It is also shown that the measurements allow a direct measurement of substrate optical absorption in the test mass and the compensation plate.Comment: 8 page

    Observation of a potential future sensitivity limitation from ground motion at LIGO Hanford

    Get PDF
    A first detection of terrestrial gravity noise in gravitational-wave detectors is a formidable challenge. With the help of environmental sensors, it can in principle be achieved before the noise becomes dominant by estimating correlations between environmental sensors and the detector. The main complication is to disentangle different coupling mechanisms between the environment and the detector. In this paper, we analyze the relations between physical couplings and correlations that involve ground motion and LIGO strain data h(t) recorded during its second science run in 2016 and 2017. We find that all noise correlated with ground motion was more than an order of magnitude lower than dominant low-frequency instrument noise, and the dominant coupling over part of the spectrum between ground and h(t) was residual coupling through the seismic-isolation system. We also present the most accurate gravitational coupling model so far based on a detailed analysis of data from a seismic array. Despite our best efforts, we were not able to unambiguously identify gravitational coupling in the data, but our improved models confirm previous predictions that gravitational coupling might already dominate linear ground-to-h(t) coupling over parts of the low-frequency, gravitational-wave observation band

    dc readout experiment at the Caltech 40m prototype interferometer

    Get PDF
    The Laser Interferometer Gravitational Wave Observatory (LIGO) operates a 40m prototype interferometer on the Caltech campus. The primary mission of the prototype is to serve as an experimental testbed for upgrades to the LIGO interferometers and for gaining experience with advanced interferometric techniques, including detuned resonant sideband extraction (i.e. signal recycling) and dc readout (optical homodyne detection). The former technique will be employed in Advanced LIGO, and the latter in both Enhanced and Advanced LIGO. Using dc readout for gravitational wave signal extraction has several technical advantages, including reduced laser and oscillator noise couplings as well as reduced shot noise, when compared to the traditional rf readout technique (optical heterodyne detection) currently in use in large-scale ground-based interferometric gravitational wave detectors. The Caltech 40m laboratory is currently prototyping a dc readout system for a fully suspended interferometric gravitational wave detector. The system includes an optical filter cavity at the interferometer's output port, and the associated controls and optics to ensure that the filter cavity is optimally coupled to the interferometer. We present the results of measurements to characterize noise couplings in rf and dc readout using this system

    Observation of Three Mode Parametric Interactions in Long Optical Cavities

    Get PDF
    We report the first observation of three-mode opto-acoustic parametric interactions of the type predicted to cause parametric instabilities in an 80 m long, high optical power cavity that uses suspended sapphire mirrors. Resonant interaction occurs between two distinct optical modes and an acoustic mode of one mirror when the difference in frequency between the two optical cavity modes is close to the frequency of the acoustic mode. Experimental results validate the theory of parametric instability in high power optical cavities.Comment: 10 pages and 5 figure

    Observation of optical torsional stiffness in a high optical power cavity

    Get PDF
    We have observed negative optical torsional rigidity in an 80 m suspended high optical power cavity that would induce the Sidles-Sigg instability as a result of sufficient circulating power. The magnitude of the negative optical spring constant per unit power is a few μN m/W as the result of the optical torsional stiffness in the yaw mode of a suspended mirror Fabry-Ṕrot cavity. It has been observed to depend on the g -factor of the cavity which is in agreement with the Sidles-Sigg theory. © 2009 American Institute of Physics.Yaohui Fan, Lucienne Merrill, Chunnong Zhao, Li Ju, David Blair, Bram Slagmolen, David Hosken, Aidan Brooks, Peter Veitch, Damien Mudge, and Jesper Munch

    Implications of Dedicated Seismometer Measurements on Newtonian-Noise Cancellation for Advanced LIGO

    Get PDF
    Newtonian gravitational noise from seismic fields will become a limiting noise source at low frequency for second-generation, gravitational-wave detectors. It is planned to use seismic sensors surrounding the detectors’ test masses to coherently subtract Newtonian noise using Wiener filters derived from the correlations between the sensors and detector data. In this Letter, we use data from a seismometer array deployed at the corner station of the Laser Interferometer Gravitational Wave Observatory (LIGO) Hanford detector combined with a tiltmeter for a detailed characterization of the seismic field and to predict achievable Newtonian-noise subtraction levels. As was shown previously, cancellation of the tiltmeter signal using seismometer data serves as the best available proxy of Newtonian-noise cancellation. According to our results, a relatively small number of seismometers is likely sufficient to perform the noise cancellation due to an almost ideal two-point spatial correlation of seismic surface displacement at the corner station, or alternatively, a tiltmeter deployed under each of the two test masses of the corner station at Hanford will be able to efficiently cancel Newtonian noise. Furthermore, we show that the ground tilt to differential arm-length coupling observed during LIGO’s second science run is consistent with gravitational coupling

    Measurable signatures of quantum mechanics in a classical spacetime

    Get PDF
    We propose an optomechanics experiment that can search for signatures of a fundamentally classical theory of gravity and in particular of the many-body Schrödinger-Newton (SN) equation, which governs the evolution of a crystal under a self-gravitational field. The SN equation predicts that the dynamics of a macroscopic mechanical oscillator’s center-of-mass wave function differ from the predictions of standard quantum mechanics [H. Yang, H. Miao, D.-S. Lee, B. Helou, and Y. Chen, Phys. Rev. Lett. 110, 170401 (2013)]. This difference is largest for low-frequency oscillators, and for materials, such as tungsten or osmium, with small quantum fluctuations of the constituent atoms around their lattice equilibrium sites. Light probes the motion of these oscillators and is eventually measured in order to extract valuable information on the pendulum’s dynamics. Due to the nonlinearity contained in the SN equation, we analyze the fluctuations of measurement results differently than standard quantum mechanics. We revisit how to model a thermal bath, and the wave-function collapse postulate, resulting in two prescriptions for analyzing the quantum measurement of the light. We demonstrate that both predict features, in the outgoing light’s phase fluctuations’ spectrum, which are separate from classical thermal fluctuations and quantum shot noise, and which can be clearly resolved with state of the art technology
    • …
    corecore