16,353 research outputs found

    Formation and evolution of coronal rain observed by SDO/AIA on February 22, 2012

    Full text link
    The formation and dynamics of coronal rain are currently not fully understood. Coronal rain is the fall of cool and dense blobs formed by thermal instability in the solar corona towards the solar surface with acceleration smaller than gravitational free fall. We aim to study the observational evidence of the formation of coronal rain and to trace the detailed dynamics of individual blobs. We used time series of the 171 \AA\, and 304 \AA\, spectral lines obtained by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO) above active region AR 11420 on February 22, 2012. Observations show that a coronal loop disappeared in the 171 \AA\ channel and appeared in the 304 \AA\ line\text{}\text{} more than one hour later, which indicates a rapid cooling of the coronal loop from 1 MK to 0.05 MK. An energy estimation shows that the radiation is higher than the heat input, which indicates so-called catastrophic cooling. The cooling was accompanied by the formation of coronal rain in the form of falling cold plasma. We studied two different sequences of falling blobs. The first sequence includes three different blobs. The mean velocities of the blobs were estimated to be 50 km s1^{-1}, 60 km s1^{-1} and 40 km s1^{-1}. A polynomial fit shows the different values of the acceleration for different blobs, which are lower than free-fall in the solar corona. The first and second blob move along the same path, but with and without acceleration, respectively. We performed simple numerical simulations for two consecutive blobs, which show that the second blob moves in a medium that is modified by the passage of the first blob. Therefore, the second blob has a relatively high speed and no acceleration, as is shown by observations. The second sequence includes two different blobs with mean velocities of 100 km s1^{-1} and 90 km s1^{-1}, respectively.Comment: 8 pages, 8 figures, Accepted in A&

    B-Meson Distribution Amplitudes of Geometric Twist vs. Dynamical Twist

    Full text link
    Two- and three-particle distribution amplitudes of heavy pseudoscalar mesons of well-defined geometric twist are introduced. They are obtained from appropriately parametrized vacuum-to-meson matrix elements by applying those twist projectors which determine the enclosed light-cone operators of definite geometric twist and, in addition, observing the heavy quark constraint. Comparing these distribution amplitudes with the conventional ones of dynamical twist we derive relations between them, partially being of Wandzura-Wilczek type; also sum rules of Burkhardt-Cottingham type are derived.The derivation is performed for the (double) Mellin moments and then re-summed to the non-local distribution amplitudes. Furthermore, a parametrization of vacuum-to-meson matrix elements for non-local operators off the light-cone in terms of distribution amplitudes accompanying independent kinematical structures is derived.Comment: 18 pages, Latex 2e, no figure

    A new class of entanglement measures

    Full text link
    We introduce new entanglement measures on the set of density operators on tensor product Hilbert spaces. These measures are based on the greatest cross norm on the tensor product of the sets of trace class operators on Hilbert space. We show that they satisfy the basic requirements on entanglement measures discussed in the literature, including convexity, invariance under local unitary operations and non-increase under local quantum operations and classical communication.Comment: Revised version accepted by J Math Phys, 12 pages, LaTeX, contains Sections 1-5 & 7 of the previous version. The previous Section 6 is now in quant-ph/0105104 and the previous Section 8 is superseded by quant-ph/010501

    Spatial distributions in static heavy-light mesons: a comparison of quark models with lattice QCD

    Full text link
    Lattice measurements of spatial distributions of the light quark bilinear densities in static mesons allow to test directly and in detail the wave functions of quark models. These distributions are gauge invariant quantities directly related to the spatial distribution of wave functions. We make a detailed comparison of the recent lattice QCD results with our own quark models, formulated previously for quite different purposes. We find a striking agreement not only between our two quark models, but also with the lattice QCD data for the ground state in an important range of distances up to about 4/GeV. Moreover the agreement extends to the L=1 states [j^P=(1/2)^+]. An explanation of several particular features completely at odds with the non-relativistic approximation is provided. A rather direct, somewhat unexpected and of course approximate relation between wave functions of certain quark models and QCD has been established.Comment: 40 pages, 5 figures (version published in PRD

    A separability criterion for density operators

    Full text link
    We give a necessary and sufficient condition for a mixed quantum mechanical state to be separable. The criterion is formulated as a boundedness condition in terms of the greatest cross norm on the tensor product of trace class operators.Comment: REVTeX, 5 page

    Does My Stigma Look Big in This? Considering the acceptability and desirability in the inclusive design of technology products

    Get PDF
    This paper examines the relationship between stigmatic effects of design of technology products for the older and disabled and contextualizes this within wider social themes such as the functional, social, medical and technology models of disability. Inclusive design approaches are identified as unbiased methods for designing for the wider population that may accommodate the needs and desires of people with impairments, therefore reducing ’aesthetic stigma’. Two case studies illustrate stigmatic and nonstigmatic designs

    Ideal MHD theory of low-frequency Alfven waves in the H-1 Heliac

    Full text link
    A part analytical, part numerical ideal MHD analysis of low-frequency Alfven wave physics in the H-1 stellarator is given. The three-dimensional, compressible ideal spectrum for H-1 is presented and it is found that despite the low beta (approx. 10^-4) of H-1 plasmas, significant Alfven-acoustic interactions occur at low frequencies. Several quasi-discrete modes are found with the three-dimensional linearised ideal MHD eigenmode solver CAS3D, including beta-induced Alfven eigenmode (BAE)- type modes in beta-induced gaps. The strongly shaped, low-aspect ratio magnetic geometry of H-1 causes CAS3D convergence difficulties requiring the inclusion of many Fourier harmonics for the parallel component of the fluid displacement eigenvector even for shear wave motions. The highest beta-induced gap reproduces large parts of the observed configurational frequency dependencies in the presence of hollow temperature profiles

    Metal-insulator transition in EuO

    Full text link
    It is shown that the spectacular metal-insulator transition in Eu-rich EuO can be simulated within an extended Kondo lattice model. The different orders of magnitude of the jump in resistivity in dependence on the concentration of oxygen vacancies as well as the low-temperature resistance minimum in high-resistivity samples are reproduced quantitatively. The huge colossal magnetoresistance (CMR) is calculated and discussed

    'It's a Form of Freedom': The experiences of people with disabilities within equestrian sport

    Get PDF
    This paper explores the embodied, gendered experiences of disabled horse‐riders. Drawing on data from five in‐depth interviews with paradressage riders, the ways in which their involvement in elite disability sport impacts upon their sense of identity and confidence are explored, as well as the considerable health and social benefits that this involvement brings. Social models of disability are employed and the shortcomings of such models, when applied to disability sport, are highlighted. The data presented here demonstrates the necessity of seeing disability sport as an embodied experience and acknowledging the importance of impairment to the experiences of disabled athletes. Living within an impaired body is also a gendered experience and the implications of this when applied to elite disability sport are considered
    corecore