816,331 research outputs found

    The Role of Starburst-AGN composites in Luminous Infrared Galaxy Mergers: Insights from the New Optical Classification Scheme

    Full text link
    We investigate the fraction of starbursts, starburst-AGN composites, Seyferts, and LINERs as a function of infrared luminosity (L_IR) and merger progress for ~500 infrared-selected galaxies. Using the new optical classifications afforded by the extremely large data set of the Sloan Digital Sky Survey, we find that the fraction of LINERs in IR-selected samples is rare (< 5%) compared with other spectral types. The lack of strong infrared emission in LINERs is consistent with recent optical studies suggesting that LINERs contain AGN with lower accretion rates than in Seyfert galaxies. Most previously classified infrared-luminous LINERs are classified as starburst-AGN composite galaxies in the new scheme. Starburst-AGN composites appear to "bridge" the spectral evolution from starburst to AGN in ULIRGs. The relative strength of the AGN versus starburst activity shows a significant increase at high infrared luminosity. In ULIRGs (L_IR >10^12 L_odot), starburst-AGN composite galaxies dominate at early--intermediate stages of the merger, and AGN galaxies dominate during the final merger stages. Our results are consistent with models for IR-luminous galaxies where mergers of gas-rich spirals fuel both starburst and AGN, and where the AGN becomes increasingly dominant during the final merger stages of the most luminous infrared objects.Comment: 30 pages, 19 figures, 10 tables, ApJ accepte

    Shuttle system ascent aerodynamic and plume heating

    Get PDF
    The shuttle program provided a challenge to the aerothermodynamicist due to the complexity of the flow field around the vehicle during ascent, since the configuration causes multiple shock interactions between the elements. Wind tunnel tests provided data for the prediction of the ascent design heating environment which involves both plume and aerodynamic heating phenomena. The approach for the heating methodology based on ground test firings and the use of the wind tunnel data to formulate the math models is discussed

    Method and apparatus for supercooling and solidifying substances

    Get PDF
    An enclosure provides a containerless environment in which a sample specimen is positioned. The specimen is heated in the containerless environment, and the specimen melt is dropped through the tube in which it cools by radiation. The tube is alternatively backfilled with an inert gas whereby the specimen melt cools by both radiation and convection during its free fall. During the free fall, the sample is in a containerless, low-gravity environment which enhances supercooling in the sample and prevents sedimentation and thermal convection influences. The sample continues to supercool until nucleation occurs which is detected by silicon photovoltaic detectors. The sample solidifies after nucleation and becomes completely solid before entering the detachable catcher. The amount of supercooling of the specimen can be measured by knowing the cooling ratio and determining the time for nucleation to occur

    Amplitude squeezed light from a laser

    Get PDF
    Intensity squeezed light was successfully generated using semiconductor lasers with sub-Poissonian pumping. Control of the pumping statistics is crucial and is achieved by a large series resistor which regulates the pump current; its sub-Poissonian statistics are then transferred to the laser output. The sub-Poissonian pumping of other laser systems is not so simple, however, and their potential as squeezed states sources is apparently diminished. We consider a conventional laser incoherently pumped well above threshold, and allow for pump depletion of the ground state. In this regime, sub-Poissonian photon statistics and squeezed amplitude fluctuations are produced

    Handling qualities aspects of NASA YF-12 flight experience

    Get PDF
    The handling qualities of the YF-12 airplane as observed during NASA research flights over the past five years were reviewed. Aircraft behavior during takeoff, acceleration, climb, cruise, descent, and landing are discussed. Pilot comments on the various flight phases and tasks are presented. Handling qualities parameters such as period, damping, amplitude ratios, roll-yaw coupling, and flight path response sensitivity are compared to existing and proposed handling qualities criteria. The influence of the propulsion systems, stability augmentation, autopilot systems, atmospheric gusts, and temperature changes are also discussed. YF-12 experience correlates well with flying qualities criteria, except for longitudinal short period damping, where existing and proposed criteria appear to be more stringent than necessary

    Top-mounted inlet system feasibility for transonic-supersonic fighter aircraft

    Get PDF
    The more salient findings are presented of recent top inlet performance evaluations aimed at assessing the feasibility of top-mounted inlet systems for transonic-supersonic fighter aircraft applications. Top inlet flow field and engine-inlet performance test data show the influence of key aircraft configuration variables-inlet longitudinal position, wing leading-edge extension planform area, canopy-dorsal integration, and variable incidence canards-on top inlet performance over the Mach range of 0.6 to 2.0. Top inlet performance data are compared with those or more conventional inlet/airframe integrations in an effort to assess the viability of top-mounted inlet systems relative to conventional inlet installations

    Phonon entropy of alloying and ordering of Cu-Au

    Get PDF
    Inelastic neutron scattering spectra were measured with a time-of-flight spectrometer on six disordered Cu-Au alloys at 300 K. The neutron-weighted phonon density of states was obtained from a conventional analysis of these spectra. Several methods were developed to account for this neutron weighting and obtain the phonon entropy of the disordered alloys. The phonon entropies of formation of disordered fcc Cu-Au alloys obtained in this way were generally mutually consistent, and were also consistent with predictions from a cluster approximation obtained from ab-initio calculations by Ozolin[underaccent cedilla [below] s-breve, Wolverton, and Zunger. We estimate a phonon entropy of disordering of 0.15±0.05kB/atom in Cu3Au at 300 K. A resonance mode associated with the motions of the heavy Au atoms in the Cu-rich alloys was observed at 9 meV. An analysis of the resonance mode provided a check on the partial phonon entropy of Au atoms
    corecore