37,931 research outputs found

    Pore-scale dynamics and the multiphase Darcy law

    No full text
    Synchrotron x-ray microtomography combined with sensitive pressure differential measurements were used to study flow during steady-state injection of equal volume fractions of two immiscible fluids of similar viscosity through a 57-mm-long porous sandstone sample for a wide range of flow rates. We found three flow regimes. (1) At low capillary numbers, Ca, representing the balance of viscous to capillary forces, the pressure gradient, ∇ P , across the sample was stable and proportional to the flow rate (total Darcy flux) q t (and hence capillary number), confirming the traditional conceptual picture of fixed multiphase flow pathways in porous media. (2) Beyond Ca ∗ ≈ 10 − 6 , pressure fluctuations were observed, while retaining a linear dependence between flow rate and pressure gradient for the same fractional flow. (3) Above a critical value Ca > Ca i ≈ 10 − 5 we observed a power-law dependence with ∇ P ∼ q a t with a ≈ 0.6 associated with rapid fluctuations of the pressure differential of a magnitude equal to the capillary pressure. At the pore scale a transient or intermittent occupancy of portions of the pore space was captured, where locally flow paths were opened to increase the conductivity of the phases. We quantify the amount of this intermittent flow and identify the onset of rapid pore-space rearrangements as the point when the Darcy law becomes nonlinear. We suggest an empirical form of the multiphase Darcy law applicable for all flow rates, consistent with the experimental results

    Quantification of sub-resolution porosity in carbonate rocks by applying high-salinity contrast brine using X-ray microtomography differential imaging

    Get PDF
    Characterisation of the pore space in carbonate reservoirs and aquifers is of utmost importance in a number of applications such as enhanced oil recovery, geological carbon storage and contaminant transport. We present a new experimental methodology that uses high-salinity contrast brine and differential imaging acquired by X-ray tomography to non-invasively obtain three-dimensional spatially resolved information on porosity and connectivity of two rock samples, Portland and Estaillades limestones, including sub-resolution micro-porosity. We demonstrate that by injecting 30 wt% KI brine solution, a sufficiently high phase contrast can be achieved allowing accurate three-phase segmentation based on differential imaging. This results in spatially resolved maps of the solid grain phase, sub-resolution micro-pores within the grains, and macro-pores. The total porosity values from the three-phase segmentation for two carbonate rock samples are shown to be in good agreement with Helium porosity measurements. Furthermore, our flow-based method allows for an accurate estimate of pore connectivity and a distribution of porosity within the sub-resolution pores

    Vacuum polarization for neutral particles in 2+1 dimensions

    Get PDF
    In 2+1 dimensions there exists a duality between a charged Dirac particle coupled minimally to a background vector potential and a neutral one coupled nonminimally to a background electromagnetic field strength. A constant uniform background electric current induces in the vacuum of the neutral particle a fermion current which is proportional to the background one. A background electromagnetic plane wave induces no current in the vacuum. For constant but nonuniform background electric charge, known results for charged particles can be translated to give the induced fermion number. Some new examples with infinite background electric charge are presented. The induced spin and total angular momentum are also discussed.Comment: REVTeX, 7 pages, no figur

    Ground-state fidelity of Luttinger liquids: A wave functional approach

    Full text link
    We use a wave functional approach to calculate the fidelity of ground states in the Luttinger liquid universality class of one-dimensional gapless quantum many-body systems. The ground-state wave functionals are discussed using both the Schrodinger (functional differential equation) formulation and a path integral formulation. The fidelity between Luttinger liquids with Luttinger parameters K and K' is found to decay exponentially with system size, and to obey the symmetry F(K,K')=F(1/K,1/K') as a consequence of a duality in the bosonization description of Luttinger liquids.Comment: 13 pages, IOP single-column format. Sec. 3 expanded with discussion of short-distance cut-off. Some typos corrected. Ref. 44 in v2 is now footnote 2 (moved by copy editor). Published versio

    Parallel Computing on a PC Cluster

    Get PDF
    The tremendous advance in computer technology in the past decade has made it possible to achieve the performance of a supercomputer on a very small budget. We have built a multi-CPU cluster of Pentium PC capable of parallel computations using the Message Passing Interface (MPI). We will discuss the configuration, performance, and application of the cluster to our work in physics.Comment: 3 pages, uses Latex and aipproc.cl

    Solutions to the Jaynes-Cummings model without the rotating-wave approximation

    Full text link
    By using extended bosonic coherent states, the solution to the Jaynes-Cummings model without the rotating-wave approximation can be mapped to that of a polynomial equation with a single variable. The solutions to this polynomial equation can give all eigenvalues and eigenfunctions of this model with all values of the coupling strength and the detuning exactly, which can be readily applied to recent circuit quantum electrodynamic systems operating in the ultra-strong coupling regime.Comment: 6 pages,3 figure

    An Astrometric Approach to Measuring the Color of an Object

    Full text link
    The color of a star is a critical feature to reflect its physical property such as the temperature. The color index is usually obtained via absolute photometry, which is demanding for weather conditions and instruments. In this work, we present an astrometric method to measure the catalog-matched color index of an object based on the effect of differential color refraction (DCR). Specifically, we can observe an object using only one filter or alternately using two different filters. Through the difference of the DCR effect compared with reference stars, the catalog-matched color index of an object can be conveniently derived. Hence, we can perform DCR calibration and obtain its accurate and precise positions even if observed with Null filter during a large range of zenith distances, by which the limiting magnitude and observational efficiency of the telescope can be significantly improved. This method takes advantage of the DCR effect and builds a link between astrometry and photometry. In practice, we measure the color indices and positions of Himalia (the sixth satellite of Jupiter) using 857 CCD frames over 8 nights by two telescopes. Totally, the mean color index BP-RP (Gaia photometric system) of Himalia is 0.750 \pm 0.004 magnitude. Through the rotational phased color index analysis, we find two places with their color indices exceeding the mean \pm 3 \sigma.Comment: 10 pages, 5 figures, 4 table
    corecore