57,987 research outputs found

    Negative-Index Refraction in a Lamellar Composite with Alternating Single Negative Layers

    Full text link
    Negative-index refraction is achieved in a lamellar composite with epsilon-negative (ENG) and mu-negative (MNG) materials stacked alternatively. Based on the effective medium approximation, simultaneously negative effective permittivity and permeability of such a lamellar composite are obtained theoretically and further proven by full-wave simulations. Consequently, the famous left-handed metamaterial comprising split ring resonators and wires is interpreted as an analogy of such an ENG-MNG lamellar composite. In addition, beyond the effective medium approximation, the propagating field squeezed near the ENG/MNG interface is demonstrated to be left-handed surface waves with backward phase velocity.Comment: 18 pages, 6 figure

    Quantum temporal imaging: application of a time lens to quantum optics

    Full text link
    We consider application of a temporal imaging system, based on the sum-frequency generation, to a nonclassical, in particular, squeezed optical temporal waveform. We analyze the restrictions on the pump and the phase matching condition in the summing crystal, necessary for preserving the quantum features of the initial waveform. We show that modification of the notion of the field of view in the quantum case is necessary, and that the quantum field of view is much narrower than the classical one for the same temporal imaging system. These results are important for temporal stretching and compressing of squeezed fields, used in quantum-enhanced metrology and quantum communications.Comment: 9 pages, 3 figure

    Chiral Symmetry and the Parity-Violating NNÏ€NN\pi Yukawa Coupling

    Get PDF
    We construct the complete SU(2) parity-violating (PV) π,N,Δ\pi, N, \Delta interaction Lagrangian with one derivative, and calculate the chiral corrections to the PV Yukawa NNπNN\pi coupling constant hπh_\pi through O(1/Λχ3){\cal O}(1/\Lambda_\chi^3) in the leading order of heavy baryon expansion. We discuss the relationship between the renormalized \hpi, the measured value of \hpi, and the corresponding quantity calculated microscopically from the Standard Model four-quark PV interaction.Comment: RevTex, 26 pages + 5 PS figure

    Superspace Formulation in a Three-Algebra Approach to D=3, N=4,5 Superconformal Chern-Simons Matter Theories

    Full text link
    We present a superspace formulation of the D=3, N=4,5 superconformal Chern-Simons Matter theories, with matter supermultiplets valued in a symplectic 3-algebra. We first construct an N=1 superconformal action, and then generalize a method used by Gaitto and Witten to enhance the supersymmetry from N=1 to N=5. By decomposing the N=5 supermultiplets and the symplectic 3-algebra properly and proposing a new super-potential term, we construct the N=4 superconformal Chern-Simons matter theories in terms of two sets of generators of a (quaternion) symplectic 3-algebra. The N=4 theories can also be derived by requiring that the supersymmetry transformations are closed on-shell. The relationship between the 3-algebras, Lie superalgebras, Lie algebras and embedding tensors (proposed in [E. A. Bergshoeff, O. Hohm, D. Roest, H. Samtleben, and E. Sezgin, J. High Energy Phys. 09 (2008) 101.]) is also clarified. The general N=4,5 superconformal Chern-Simons matter theories in terms of ordinary Lie algebras can be rederived in our 3-algebra approach. All known N=4,5 superconformal Chern-Simons matter theories can be recovered in the present superspace formulation for super-Lie-algebra realization of symplectic 3-algebras.Comment: 37 pages, minor changes, published in PR

    Subleading corrections to parity-violating pion photoproduction

    Get PDF
    We compute the photon asymmetry Bγ for near threshold parity-violating (PV) pion photoproduction through subleading order. We show that subleading contributions involve a new combination of PV couplings not included in previous analyses of hadronic PV. We argue that existing constraints on the leading order contribution to Bγ—obtained from the PV γ-decay of 18F—suggest that the impact of the subleading contributions may be more significant than expected from naturalness arguments

    Possible discovery of the r-process characteristics in the abundances of metal-rich barium stars

    Full text link
    We study the abundance distributions of a sample of metal-rich barium stars provided by Pereira et al. (2011) to investigate the s- and r-process nucleosynthesis in the metal-rich environment. We compared the theoretical results predicted by a parametric model with the observed abundances of the metal-rich barium stars. We found that six barium stars have a significant r-process characteristic, and we divided the barium stars into two groups: the r-rich barium stars (Cr>5.0C_r>5.0, [La/Nd]\,<0<0) and normal barium stars. The behavior of the r-rich barium stars seems more like that of the metal-poor r-rich and CEMP-r/s stars. We suggest that the most possible formation mechanism for these stars is the s-process pollution, although their abundance patterns can be fitted very well when the pre-enrichment hypothesis is included. The fact that we can not explain them well using the s-process nucleosynthesis alone may be due to our incomplete knowledge on the production of Nd, Eu, and other relevant elements by the s-process in metal-rich and super metal-rich environments (see details in Pereira et al. 2011).Comment: 5 pages, 5 figures, accepted for publication in A&

    Classical simulation of quantum many-body systems with a tree tensor network

    Get PDF
    We show how to efficiently simulate a quantum many-body system with tree structure when its entanglement is bounded for any bipartite split along an edge of the tree. This is achieved by expanding the {\em time-evolving block decimation} simulation algorithm for time evolution from a one dimensional lattice to a tree graph, while replacing a {\em matrix product state} with a {\em tree tensor network}. As an application, we show that any one-way quantum computation on a tree graph can be efficiently simulated with a classical computer.Comment: 4 pages,7 figure
    • …
    corecore