1,782 research outputs found

    Deviations from the Gaussian distribution of mesoscopic conductance fluctuations

    Get PDF
    The conductance distribution of metallic mesoscopic systems is considered. The variance of this distribution describes the universal conductance fluctuations, yielding a Gaussian distribution of the conductance. We calculate diagrammatically the third cumulant of this distribution, the leading deviation from the Gaussian. We confirm random matrix theory calculations that the leading contribution in quasi-one dimension vanishes. However, in quasi two dimensions the third cumulant is negative, whereas in three dimensions it is positive.Comment: 9 pages, Revtex, with eps figures,to appear in Phys Rev

    Dynamics and robustness of familiarity memory

    Get PDF
    When presented with an item or a face, one might have a sense of recognition without the ability to recall when or where the stimulus has been encountered before. This sense of recognition is called familiarity memory. Following previous computational studies of familiarity memory, we investigate the dynamical properties of familiarity discrimination and contrast two different familiarity discriminators: one based on the energy of the neural network and the other based on the time derivative of the energy. We show how the familiarity signal decays rapidly after stimulus presentation. For both discriminators, we calculate the capacity using mean field analysis. Compared to recall capacity (the classical associative memory in Hopfield nets), both the energy and the slope discriminators have bigger capacity, yet the energy-based discriminator has a higher capacity than one based on its time derivative. Finally, both discriminators are found to have a different noise dependence

    Field and intensity correlations in random media

    Full text link
    Measurements of the microwave field transmitted through a random medium allows direct access to the field correlation function, whose complex square is the short range or C1 contribution to the intensity correlation function C. The frequency and spatial correlation function are compared to their Fourier pairs, the time of flight distribution and the specific intensity, respectively. The longer range contribution to intensity correlation is obtained directly by subtracting C1 from C and is in good agreement with theory.Comment: 9 pages, 5 figures, submitted to Phys.Rev.

    Clinical Characteristics of Cutaneous Melanoma and Second Primary Malignancies in a Dutch Hospital-Based Cohort of Cutaneous Melanoma Patients

    Get PDF
    The increasing number of living cutaneous melanoma patients and the increased risk of developing a second primary tumour incited us to analyse the clinical characteristics of cutaneous melanoma and define the frequency, site, and type of second primary cancers in cutaneous melanoma patients. We collected data on patients who visited the Department of Dermatology at the Radboud University Nijmegen Medical Centre and were newly diagnosed with cutaneous melanoma or metastasis of melanoma with unknown primary localization between 2002 and 2006. A total of 194 cases were included; eleven patients developed a subsequent melanoma, 24 had at least one basal cell carcinoma, three had at least one squamous cell carcinoma, and 21 patients had a second non-cutaneous primary malignancy. In conclusion, 48 patients developed a subsequent malignancy. As nonmelanoma skin cancer is the most frequent second malignancy, our results subscribe to the necessity of follow-up by a dermatologist

    Intensity Distribution of Waves Transmitted Through a Multiple Scattering Medium

    Get PDF
    The distributions of the angular transmission coefficient and of the total transmission are calculated for multiple scattered waves. The calculation is based on a mapping to the distribution of eigenvalues of the transmission matrix. The distributions depend on the profile of the incoming beam. The distribution function of the angular transmission has a stretched exponential decay. The total-transmission distribution grows log-normally whereas it decays exponentially.Comment: 8 pages, revtex3.0, 3 postscript figures, NvR0
    corecore