22,121 research outputs found

    Dynamic model for failures in biological systems

    Full text link
    A dynamic model for failures in biological organisms is proposed and studied both analytically and numerically. Each cell in the organism becomes dead under sufficiently strong stress, and is then allowed to be healed with some probability. It is found that unlike the case of no healing, the organism in general does not completely break down even in the presence of noise. Revealed is the characteristic time evolution that the system tends to resist the stress longer than the system without healing, followed by sudden breakdown with some fraction of cells surviving. When the noise is weak, the critical stress beyond which the system breaks down increases rapidly as the healing parameter is raised from zero, indicative of the importance of healing in biological systems.Comment: To appear in Europhys. Let

    (2,2)-Formalism of General Relativity: An Exact Solution

    Get PDF
    I discuss the (2,2)-formalism of general relativity based on the (2,2)-fibration of a generic 4-dimensional spacetime of the Lorentzian signature. In this formalism general relativity is describable as a Yang-Mills gauge theory defined on the (1+1)-dimensional base manifold, whose local gauge symmetry is the group of the diffeomorphisms of the 2-dimensional fibre manifold. After presenting the Einstein's field equations in this formalism, I solve them for spherically symmetric case to obtain the Schwarzschild solution. Then I discuss possible applications of this formalism.Comment: 2 figures included, IOP style file neede

    New Hamiltonian formalism and quasi-local conservation equations of general relativity

    Full text link
    I describe the Einstein's gravitation of 3+1 dimensional spacetimes using the (2,2) formalism without assuming isometries. In this formalism, quasi-local energy, linear momentum, and angular momentum are identified from the four Einstein's equations of the divergence-type, and are expressed geometrically in terms of the area of a two-surface and a pair of null vector fields on that surface. The associated quasi-local balance equations are spelled out, and the corresponding fluxes are found to assume the canonical form of energy-momentum flux as in standard field theories. The remaining non-divergence-type Einstein's equations turn out to be the Hamilton's equations of motion, which are derivable from the {\it non-vanishing} Hamiltonian by the variational principle. The Hamilton's equations are the evolution equations along the out-going null geodesic whose {\it affine} parameter serves as the time function. In the asymptotic region of asymptotically flat spacetimes, it is shown that the quasi-local quantities reduce to the Bondi energy, linear momentum, and angular momentum, and the corresponding fluxes become the Bondi fluxes. The quasi-local angular momentum turns out to be zero for any two-surface in the flat Minkowski spacetime. I also present a candidate for quasi-local {\it rotational} energy which agrees with the Carter's constant in the asymptotic region of the Kerr spacetime. Finally, a simple relation between energy-flux and angular momentum-flux of a generic gravitational radiation is discussed, whose existence reflects the fact that energy-flux always accompanies angular momentum-flux unless the flux is an s-wave.Comment: 36 pages, 3 figures, RevTex

    Electronic structures of Zn1x_{1-x}Cox_xO using photoemission and x-ray absorption spectroscopy

    Full text link
    Electronic structures of Zn1x_{1-x}Cox_xO have been investigated using photoemission spectroscopy (PES) and x-ray absorption spectroscopy (XAS). The Co 3d states are found to lie near the top of the O 2p2p valence band, with a peak around 3\sim 3 eV binding energy. The Co 2p2p XAS spectrum provides evidence that the Co ions in Zn1x_{1-x}Cox_{x}O are in the divalent Co2+^{2+} (d7d^7) states under the tetrahedral symmetry. Our finding indicates that the properly substituted Co ions for Zn sites will not produce the diluted ferromagnetic semiconductor property.Comment: 3 pages, 2 figure

    Dynamic model of fiber bundles

    Full text link
    A realistic continuous-time dynamics for fiber bundles is introduced and studied both analytically and numerically. The equation of motion reproduces known stationary-state results in the deterministic limit while the system under non-vanishing stress always breaks down in the presence of noise. Revealed in particular is the characteristic time evolution that the system tends to resist the stress for considerable time, followed by sudden complete rupture. The critical stress beyond which the complete rupture emerges is also obtained

    Source mechanism of Saturn narrowband emission

    Get PDF
    Narrowband emission (NB) is observed at Saturn centered near 5 kHz and 20 kHz and harmonics. This emission appears similar in many ways to Jovian kilometric narrowband emission observed at higher frequencies, and therefore may have a similar source mechanism. Source regions of NB near 20 kHz are believed to be located near density gradients in the inner magnetosphere and the emission appears to be correlated with the occurrence of large neutral plasma clouds observed in the Saturn magnetotail. In this work we present the results of a growth rate analysis of NB emission (~20 kHz) near or within a probable source region. This is made possible by the sampling of in-situ wave and particle data. The results indicate waves are likely to be generated by the mode-conversion of directly generated Z-mode emission to O-mode near a density gradient. When the local hybrid frequency is close <I>n</I> <I>f</I><sub>ce</sub> (<I>n</I> is an integer and <I>f</I><sub>ce</sub> is the electron cyclotron frequency) with <I>n</I>=4, 5 or 6 in our case, electromagnetic Z-mode and weak ordinary (O-mode) emission can be directly generated by the cyclotron maser instability

    Uric acid enhances longevity and endurance and protects the brain against ischemia

    Get PDF
    Among mammals, there is a positive correlation between serum uric acid (UA) levels and life span. Humans have high levels of UA because they lack a functional urate oxidase (UOX) enzyme that is present in shorter lived mammals. Here, we show that male and female mice with UOX haploinsufficiency exhibit an age-related elevation of UA levels, and that the life span of female but not male UOX+/− mice is significantly increased compared to wild-type mice. Serum UA levels are elevated in response to treadmill exercise in UOX+/− mice, but not wild-type mice, and the endurance of the UOX+/− mice is significantly greater than wild-type mice. UOX+/− mice exhibit elevated levels of brain-derived neurotrophic factor, reduced brain damage and improved functional outcome in a model of focal ischemic stroke. Levels of oxidative protein nitration and lipid peroxidation are reduced in muscle and brain tissues of UOX+/− mice under conditions of metabolic and oxidative stress (running in the case of muscle and ischemia in the case of the brain), consistent with prior evidence that UA can scavenge peroxynitrite and hydroxyl radical. Our findings reveal roles for UA in life span determination, endurance and adaptive responses to brain injury, and suggest novel approaches for protecting cells against injury and for optimizing physical performance.España, Ministerio de Educación, Cultura y Deporte EX2009–091

    Formation of an Icosahedral Structure during the Freezing of Gold Nanoclusters: Surface-Induced Mechanism

    Full text link
    The freezing behavior of gold nanoclusters was studied by employing molecular dynamics simulations based on a semi-empirical embedded-atom method. Investigations of the gold nanoclusters revealed that, just after freezing, ordered nano-surfaces with a fivefold symmetry were formed with interior atoms remaining in the disordered state. Further lowering of temperatures induced nano-crystallization of the interior atoms that proceeded from the surface towards the core region, finally leading to an icosahedral structure. These dynamic processes explain why the icosahedral cluster structure is dominantly formed in spite of its energetic metastability.Comment: 9 pages, 4 figures(including 14 eps-files
    corecore