471 research outputs found

    Gravity is not a Pairwise Local Classical Channel

    Get PDF
    It is currently believed that there is no experimental evidence on possibly quantum features of gravity or gravity-motivated modifications of quantum mechanics. Here we show that single-atom interference experi- ments achieving large spatial superpositions can rule out a framework where the Newtonian gravitational inter- action is fundamentally classical in the information-theoretic sense: it cannot convey entanglement. Specifically, in this framework gravity acts pairwise between massive particles as classical channels, which effectively induce approximately Newtonian forces between the masses. The experiments indicate that if gravity does reduce to the pairwise Newtonian interaction between atoms at the low energies, this interaction cannot arise from the exchange of just classical information, and in principle has the capacity to create entanglement. We clarify that, contrary to current belief, the classical-channel description of gravity differs from the model of Diosi and Penrose, which is not constrained by the same data.Comment: 13 pages, 5 figures, 2 tables, Late

    A cosmic gamma-ray burst on May 14, 1975

    Get PDF
    A cosmic gamma-ray burst is reported that occurred at 29309.11 s UTC, May 14, 1975. The burst was detected at an atmospheric depth of 4 g/sq cm residual atmosphere with the University of California double scatter gamma-ray telescope launched on a balloon from Palestine, Texas at 1150 UTC, May 13, 1975. The burst was observed both in the single scatter mode by the top liquid scintillator tank in anti-coincidence with the surrounding plastic scintillator and in the double scatter mode from which energy and directional information are obtained. The burst is 24 standard deviations above the background for single scatter events. The total gamma-ray flux in the burst, incident on the atmosphere with photon energy greater than 0.5 MeV, is 0.59 + or - 0.15 photons/sq cm. The initial rise time to 90% of maximum is 0.015 + or - 0.005 s and the duration is 0.11 s. Time structure down to the 5 ms resolution of the telescope is seen. The mean flux over this time period is 5.0 + or - 1.3 photons/sq cm/s and the maximum flux is 8.5 + or - 2.1 photons/sq cm/s

    The connection between metallicity and metal-line kinematics in (sub-)damped Lyman-alpha systems

    Full text link
    A correlation between the metallicity, [M/H], and rest-frame MgII equivalent width, EW, is found from 49 DLAs and strong sub-DLAs drawn from the literature over the redshift range 0.2<z_abs<2.6. The correlation is significant at 4.2 sigma and improves to 4.7 sigma when the mild evolution of [M/H] with redshift is taken into account. Even when including only the 26 DLAs (i.e. excluding sub-DLAs) which have Zn metallicities and EW>0.7A, the correlation remains at >3 sigma significance. Since the MgII2796 transition is predominantly saturated in DLAs (which always have EW greater than 0.3A), EW is far more sensitive to the kinematic spread of the metal velocity components across the absorption profile than it is to [M/H]. Thus, the observed [M/H]--EW correlation points to a strong link between the absorber metallicity and the mechanism for producing and dispersing the velocity components. We also note that approximately half of the 13 known molecular hydrogen absorbers have very high EW and very broad velocity structures which show characteristics usually associated with outflows. Follow-up ultraviolet- and blue-sensitive high-resolution spectra of high-EW systems, initially identified in low-resolution spectra, may therefore yield a large number of new H_2 discoveries.Comment: 9 pages, 2 figures (3 EPS files). Accepted by MNRA

    Schr\"odinger's Black Hole Cat

    Full text link
    In the absence of a fully-fledged theory of quantum gravity, we propose a "bottom-up" framework for exploring quantum-gravitational physics by pairing two of the most fundamental concepts of quantum theory and general relativity, namely quantum superposition and spacetime. We show how to describe such "spacetime superpositions" and explore effects they induce upon quantum matter. Our approach capitalizes on standard tools of quantum field theory in curved space, and allows us to calculate physical observables like transition probabilities for a particle detector residing in curvature-superposed de Sitter spacetime, or outside a mass-superposed black hole. Crucially, such scenarios represent genuine quantum superpositions of spacetimes, in contrast with superpositions of metrics which only differ by a coordinate transformation and thus are not different according to general relativity.Comment: 12 pages, Essay written for the Gravity Research Foundation 2022 Awards for Essays on Gravitatio

    Quantum signatures of black hole mass superpositions

    Full text link
    We present a new operational framework for studying ``superpositions of spacetimes'', which are of fundamental interest in the development of a theory of quantum gravity. Our approach capitalizes on nonlocal correlations in curved spacetime quantum field theory, allowing us to formulate a metric for spacetime superpositions as well as characterizing the coupling of particle detectors to a quantum field. We apply our approach to analyze the dynamics of a detector (using the Unruh-deWitt model) in a spacetime generated by a BTZ black hole in a superposition of masses. We find that the detector exhibits signatures of quantum-gravitational effects corroborating and extending Bekenstein's seminal conjecture concerning the quantized mass spectrum of black holes in quantum gravity. Crucially, this result follows directly from the approach, without any additional assumptions about the black hole mass properties.Comment: Close to published version. Supplemental materials found on publisher's websit

    Modeling the Redshift Evolution of the Normal Galaxy X-ray Luminosity Function

    Get PDF
    Emission from X-ray binaries (XRBs) is a major component of the total X-ray luminosity of normal galaxies, so X-ray studies of high redshift galaxies allow us to probe the formation and evolution of X-ray binaries on very long timescales. In this paper, we present results from large-scale population synthesis models of binary populations in galaxies from z = 0 to 20. We use as input into our modeling the Millennium II Cosmological Simulation and the updated semi-analytic galaxy catalog by Guo et al. (2011) to self-consistently account for the star formation history (SFH) and metallicity evolution of each galaxy. We run a grid of 192 models, varying all the parameters known from previous studies to affect the evolution of XRBs. We use our models and observationally derived prescriptions for hot gas emission to create theoretical galaxy X-ray luminosity functions (XLFs) for several redshift bins. Models with low CE efficiencies, a 50% twins mass ratio distribution, a steeper IMF exponent, and high stellar wind mass loss rates best match observational results from Tzanavaris & Georgantopoulos (2008), though they significantly underproduce bright early-type and very bright (Lx > 10d41) late-type galaxies. These discrepancies are likely caused by uncertainties in hot gas emission and SFHs, AGN contamination, and a lack of dynamically formed Low-mass XRBs. In our highest likelihood models, we find that hot gas emission dominates the emission for most bright galaxies. We also find that the evolution of the normal galaxy X-ray luminosity density out to z = 4 is driven largely by XRBs in galaxies with X-ray luminosities between 10d40 and 10d41 erg/s.Comment: Accepted into ApJ, 17 pages, 3 tables, 7 figures. Text updated to address referee's comment

    Testing the Universality of the Stellar IMF with Chandra and HST

    Get PDF
    The stellar initial mass function (IMF), which is often assumed to be universal across unresolved stellar populations, has recently been suggested to be "bottom-heavy" for massive ellipticals. In these galaxies, the prevalence of gravity-sensitive absorption lines (e.g. Na I and Ca II) in their near-IR spectra implies an excess of low-mass (m<=0.5m <= 0.5 M⊙M_\odot) stars over that expected from a canonical IMF observed in low-mass ellipticals. A direct extrapolation of such a bottom-heavy IMF to high stellar masses (m>=8m >= 8 M⊙M_\odot) would lead to a corresponding deficit of neutron stars and black holes, and therefore of low-mass X-ray binaries (LMXBs), per unit near-IR luminosity in these galaxies. Peacock et al. (2014) searched for evidence of this trend and found that the observed number of LMXBs per unit KK-band luminosity (N/LKN/L_K) was nearly constant. We extend this work using new and archival Chandra X-ray Observatory (Chandra) and Hubble Space Telescope (HST) observations of seven low-mass ellipticals where N/LKN/L_K is expected to be the largest and compare these data with a variety of IMF models to test which are consistent with the observed N/LKN/L_K. We reproduce the result of Peacock et al. (2014), strengthening the constraint that the slope of the IMF at m>=8m >= 8 M⊙M_\odot must be consistent with a Kroupa-like IMF. We construct an IMF model that is a linear combination of a Milky Way-like IMF and a broken power-law IMF, with a steep slope (α1=\alpha_1= 3.843.84) for stars < 0.5 M⊙M_\odot (as suggested by near-IR indices), and that flattens out (α2=\alpha_2= 2.142.14) for stars > 0.5 M⊙M_\odot, and discuss its wider ramifications and limitations.Comment: Accepted for publication in ApJ; 7 pages, 2 figures, 1 tabl
    • …
    corecore