10 research outputs found

    On the Use of Hedonic Price Indices to Understand Ecosystem Service Provision from Urban Green Space in Five Latin American Megacities

    No full text
    Latin American (LA) megacities are facing enormous challenges to provide welfare to millions of people who live in them. High rates of urbanization and limited administrative capacity of LA cities to plan and control urban growth have led to a critical deficit of urban green space, and therefore, to sub-optimal outcomes in terms of urban sustainability. This study seeks to assess the possibility of using real estate prices to provide an estimate of the monetary value of the ecosystem services provided by urban green space across five Latin American megacities: Bogota, Buenos Aires, Lima, Mexico City and Santiago de Chile. Using Google Earth images to quantify urban green space and multiple regression analysis, we evaluated the impact of urban green space, crime rates, business density and population density on real estate prices across the five mentioned megacities. In addition, for a subset of the data (Lima and Buenos Aires) we analyzed the effects of landscape ecology variables (green space patch size, connectivity, etc.) on real estate prices to provide a first insight into how the ecological attributes of urban green space can determine the level of ecosystem service provision in different urban contexts in Latin America. The results show a strong positive relationship between the presence of urban green space and real estate prices. Green space explains 52% of the variability in real estate prices across the five studied megacities. Population density, business density and crime had only minor impacts on real estate prices. Our analysis of the landscape ecology variables in Lima and Buenos Aires also show that the relationship between green space and price is context-specific, which indicates that further research is needed to better understand when and where ecological attributes of green space affect real estate prices so that managers of urban green space in LA cities can optimize ecological configuration to maximize ecosystem service provision from often limited green spaces

    National satellite-based humid tropical forest change assessment in Peru in support of REDD+ implementation

    No full text
    Transparent, consistent, and accurate national forest monitoring is required for successful implementation of reducing emissions from deforestation and forest degradation (REDD+) programs. Collecting baseline information on forest extent and rates of forest loss is a first step for national forest monitoring in support of REDD+. Peru, with the second largest extent of Amazon basin rainforest, has made significant progress in advancing its forest monitoring capabilities. We present a national-scale humid tropical forest cover loss map derived by the Ministry of Environment REDD+ team in Peru. The map quantifies forest loss from 2000 to 2011 within the Peruvian portion of the Amazon basin using a rapid, semi-automated approach. The available archive of Landsat imagery (11 654 scenes) was processed and employed for change detection to obtain annual gross forest cover loss maps. A stratified sampling design and a combination of Landsat (30 m) and RapidEye (5 m) imagery as reference data were used to estimate the primary forest cover area, total gross forest cover loss area, proportion of primary forest clearing, and to validate the Landsat-based map. Sample-based estimates showed that 92.63% (SE = 2.16%) of the humid tropical forest biome area within the country was covered by primary forest in the year 2000. Total gross forest cover loss from 2000 to 2011 equaled 2.44% (SE = 0.16%) of the humid tropical forest biome area. Forest loss comprised 1.32% (SE = 0.37%) of primary forest area and 9.08% (SE = 4.04%) of secondary forest area. Validation confirmed a high accuracy of the Landsat-based forest cover loss map, with a producer’s accuracy of 75.4% and user’s accuracy of 92.2%. The majority of forest loss was due to clearing (92%) with the rest attributed to natural processes (flooding, fires, and windstorms). The implemented Landsat data processing and classification system may be used for operational annual forest cover loss updates at the national level for REDD+ applications

    Literatur

    No full text
    corecore