12 research outputs found
PHYCOBILISOMES AND ISOLATED PHYCOBILIPROTEINS. EFFECT OF GLUTARDIALDEHYDE AND BENZOQUINONE ON FLUORESCENCE
The fluorescence of the biliproteins C-phycocyanin from Spirulina platensis, B-phycoerythrin
from Porphyridium cruentum and of isolated whole P. cruentum phycobilisomes is quenched in the
presence of glutardialdehyde (GA) or benzoquinone (BQ). The kinetics of fluorescence decrease thus
induced is biphasic. If GA is used as a quencher, the fluorescence can be recovered at 77 K. Contrary to
the GA-effect, only a minor recovery takes place with BQ at 77K, thus demonstrating a different
mechanism of action of GA and BQ on biliprotein
THERMAL DENATURATION OF MONOMERIC AND TRIMERIC PHYCOCYANINS STUDIED BY STATIC AND SPECTROSCOPY POLARIZED TIME-RESOLVED FLUORESCENCE
C-Phycocyanin (PC) and allophycocyanin (APC). as well as the a-subunit of PC. have been
isolated from the blue-green alga (cyanobacterium). Spirulina platensis. The effects of partial thermal
denaturation of PC and of its state of aggregation have been studied by ps time-resolved, polarized
fluorescence spectroscopy. All measurements have been performed under low photon fluxes (< 10’ ’
photonsipulse x cm’) to minimize singlet-singlet annihilation processes. A complex decay is obtained
under most conditions, which can be fitted satisfactorily with a bi-exponential (7’ = 70400 ps. T? =
1000-3000 ps) for both the isotropic and the polarized part, but with different intensities and time
constants for the two decay curves. The data are interpreted in the frameworkof the model first developed
by Teak and Dale (Biochern. J. 116, 161 (1970)], which divides the spectroscopically different
chromophores in (predominantly) sensitizing (s) and fluorescing U, ones. If one assumes temperature
dependent losses in the energy transfer from the s to the f and between f chromophores. both the
biexponential nature of the isotropic fluorescence decay and the polarization data can be rationalized. In
the isotropic emission (corresponding to the population of excited states) the short lifetime is related to the
s-,f transfer. the longer one to the “free“ decay of the final acceptor(s) (= f). The polarized part is
dominated by an extremely short decay time. which is related to s+f transfer, as well as to resonance
transfer between the f-chromophores