25 research outputs found

    Is keV ion induced pattern formation on Si(001) caused by metal impurities?

    Full text link
    We present ion beam erosion experiments performed in ultra high vacuum using a differentially pumped ion source and taking care that the ion beam hits the Si(001) sample only. Under these conditions no ion beam patterns form on Si for angles below 45 degrees with respect to the global surface normal using 2 keV Kr ions and fluences of 2 x 10^22 ions/m^2. In fact, the ion beam induces a smoothening of preformed patterns. Simultaneous sputter deposition of stainless steel in this angular range creates a variety of patterns, similar to those previously ascribed to clean ion beam induced destabilization of the surface profile. Only for grazing incidence with incident angles between 60 degrees and 83 degrees pronounced ion beam patterns form. It appears that the angular dependent stability of Si(001) against pattern formation under clean ion beam erosion conditions is related to the angular dependence of the sputtering yield, and not primarily to a curvature dependent yield as invoked frequently in continuum theory models.Comment: 15 pages, 7 figures. This is an author-created, un-copyedited version of an article published in Nanotechnology. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from i

    Ion beam assisted smoothing of optical surfaces

    No full text

    Ion-induced nanopatterns on semiconductor surfaces investigated by grazing incidence x-ray scattering techniques

    No full text
    In this review we cover and describe the application of grazing incidence x-ray scattering techniques to study and characterize nanopattern formation on semiconductor surfaces by ion beam erosion under various conditions. It is demonstrated that x-rays under grazing incidence are especially well suited to characterize (sub) surface structures on the nanoscale with high spatial and statistical accuracy. The corresponding theory and data evaluation is described in the distorted wave Born approximation. Both ex situ and in situ studies are presented, performed with the use of a specially designed sputtering chamber which allows us to follow the temporal evolution of the nanostructure formation. Corresponding results show a general stabilization of the ordering wavelength and the extension of the ordering as a function of the ion energy and fluence as predicted by theory. The in situ measurements are especially suited to study the early stages of pattern formation, which in some cases reveal a transition from dot to ripple formation. For the case of medium energy ions crystalline ripples are formed buried under a semi-amorphous thick layer with a ripple structure at the surface being conformal with the crystalline/amorphous interface. Here, the x-ray techniques are especially advantageous since they are non-destructive and bulk-sensitive by their very nature. In addition, the GI x-ray techniques described in this review are a unique tool to study the evolving strain, a topic which remains to be explored both experimentally and theoretically
    corecore