413 research outputs found
Dynamic update of shortest path tree in OSPF
2003-2004 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe
Binary Neutron-Star Systems: From the Newtonian Regime to the Last Stable Orbit
We report on the first calculations of fully relativistic binary circular
orbits to span a range of separation distances from the innermost stable
circular orbit (ISCO), deeply inside the strong field regime, to a distance
( 200 km) where the system is accurately described by Newtonian dynamics.
We consider a binary system composed of two identical corotating neutron stars,
with 1.43 gravitational mass each in isolation. Using a conformally
flat spatial metric we find solutions to the initial value equations that
correspond to semi-stable circular orbits. At large distance, our numerical
results agree exceedingly well with the Newtonian limit. We also present a self
consistent determination of the ISCO for different stellar masses.Comment: 4 pages, 3 postscript figures. Data points added to fig 2; some
issues clarified; references adde
Truncated post-Newtonian neutron star model
As a preliminary step towards simulating binary neutron star coalescing
problem, we test a post-Newtonian approach by constructing a single neutron
star model. We expand the Tolman-Oppenheimer-Volkov equation of hydrostatic
equilibrium by the power of , where is the speed of light, and
truncate at the various order. We solve the system using the polytropic
equation of state with index and 3, and show how this
approximation converges together with mass-radius relations. Next, we solve the
Hamiltonian constraint equation with these density profiles as trial functions,
and examine the differences in the final metric. We conclude the second
`post-Newtonian' approximation is close enough to describe general relativistic
single star. The result of this report will be useful for further binary
studies.
(Note to readers) This paper was accepted for publication in Physical Review
D. [access code dsj637]. However, since I was strongly suggested that the
contents of this paper should be included as a section in our group's future
paper, I gave up the publication.Comment: 5 pages, RevTeX, 3 eps figs, epsf.sty, accepted for publication in
PRD (Brief Report), but will not appea
Conformally Flat Smoothed Particle Hydrodynamics: Application to Neutron Star Mergers
We present a new 3D SPH code which solves the general relativistic field +
hydrodynamics equations in the conformally flat approximation. Several test
cases are considered to test different aspects of the code. We finally apply
then the code to the coalescence of a neutron star binary system. The neutron
stars are modeled by a polytropic equation of state (EoS) with adiabatic
indices , and . We calculate the
gravitational wave signals, luminosities and frequency spectra by employing the
quadrupole approximation for emission and back reaction in the slow motion
limit. In addition, we consider the amount of ejected mass.Comment: 23 pages, 12 figures. Accepted for publication in Phys. Rev. D. v3:
Final Versio
Gravitational Radiation from Triple Star Systems
We have studied the main features of the gravitational radiation generated by
an astrophysical system constituted of three compact objects attracting one
another (only via gravitational interaction) in such a manner that stable
orbits do exist. We have limited our analysis to systems that can be treated
with perturbative methods. We show the profile of the gravitational waves
emitted by such systems. These results can be useful within the framework of
the new gravitational astronomy which will be made feasible by means of the new
generation of gravitational detectors such as LISA in a no longer far future.Comment: 10 pages plus 9 postscript figures; revtex; accepted for publication
in Int. J. Mod. Phys.
General Relativistic Models of Binary Neutron Stars in Quasiequilibrium
We perform fully relativistic calculations of binary neutron stars in
corotating, circular orbit. While Newtonian gravity allows for a strict
equilibrium, a relativistic binary system emits gravitational radiation,
causing the system to lose energy and slowly spiral inwards. However, since
inspiral occurs on a time scale much longer than the orbital period, we can
treat the binary to be in quasiequilibrium. In this approximation, we integrate
a subset of the Einstein equations coupled to the relativistic equation of
hydrostatic equilibrium to solve the initial value problem for binaries of
arbitrary separation. We adopt a polytropic equation of state to determine the
structure and maximum mass of neutron stars in close binaries for polytropic
indices n=1, 1.5 and 2. We construct sequences of constant rest-mass and locate
turning points along energy equilibrium curves to identify the onset of orbital
instability. In particular, we locate the innermost stable circular orbit
(ISCO) and its angular velocity. We construct the first contact binary systems
in full general relativity. These arise whenever the equation of state is
sufficiently soft >= 1.5. A radial stability analysis reveals no tendency for
neutron stars in close binaries to collapse to black holes prior to merger.Comment: 14 pages, 8 figures, RevTe
Gravitational Radiation from Rotational Instabilities in Compact Stellar Cores with Stiff Equations of State
We carry out 3-D numerical simulations of the dynamical instability in
rapidly rotating stars initially modeled as polytropes with n = 1.5, 1.0, and
0.5. The calculations are done with a SPH code using Newtonian gravity, and the
gravitational radiation is calculated in the quadrupole limit. All models
develop the global m=2 bar mode, with mass and angular momentum being shed from
the ends of the bar in two trailing spiral arms. The models then undergo
successive episodes of core recontraction and spiral arm ejection, with the
number of these episodes increasing as n decreases: this results in
longer-lived gravitational wave signals for stiffer models. This instability
may operate in a stellar core that has expended its nuclear fuel and is
prevented from further collapse due to centrifugal forces. The actual values of
the gravitational radiation amplitudes and frequencies depend sensitively on
the radius of the star R_{eq} at which the instability develops.Comment: 39 pages, uses Latex 2.09. To be published in the Dec. 15, 1996 issue
of Physical Review D. 21 figures (bitmapped). Originals available in
compressed Postscript format at ftp://zonker.drexel.edu/papers/bars
Binary Neutron Stars in General Relativity: Quasi-Equilibrium Models
We perform fully relativistic calculations of binary neutron stars in
quasi-equilibrium circular orbits. We integrate Einstein's equations together
with the relativistic equation of hydrostatic equilibrium to solve the initial
value problem for equal-mass binaries of arbitrary separation. We construct
sequences of constant rest mass and identify the innermost stable circular
orbit and its angular velocity. We find that the quasi-equilibrium maximum
allowed mass of a neutron star in a close binary is slightly larger than in
isolation.Comment: 4 pages, 3 figures, RevTe
What Makes Theatrical Performances Successful in China's Tourism Industry?
This study aims to explore the factors affecting the success of a popular tourist product, namely, theatrical performance, within the context of China's tourism industry and develop a model based on previously successful productions. Using qualitative software, 22 Chinese-language articles on theatrical performances are analyzed to generate a list of success factors, classified as internal and external. The internal factors are storyline and performing, market positioning and marketing strategy, investment and financial support, operation and management, performing team, outdoor venue, indoor/outdoor stage supporting facilities, continuous improvement, and production team. The external factors are collaboration between cultural industries and local tourism, government support, privatization, and social and cultural effect. This study also provides suggestions for the future development of theatrical performances in China
Innermost Stable Circular Orbit of Inspiraling Neutron-Star Binaries: Tidal Effects, Post-Newtonian Effects and the Neutron-Star Equation of State
We study how the neutron-star equation of state affects the onset of the
dynamical instability in the equations of motion for inspiraling neutron-star
binaries near coalescence. A combination of relativistic effects and Newtonian
tidal effects cause the stars to begin their final, rapid, and
dynamically-unstable plunge to merger when the stars are still well separated
and the orbital frequency is 500 cycles/sec (i.e. the gravitational
wave frequency is approximately 1000 Hz). The orbital frequency at which the
dynamical instability occurs (i.e. the orbital frequency at the innermost
stable circular orbit) shows modest sensitivity to the neutron-star equation of
state (particularly the mass-radius ratio, , of the stars). This
suggests that information about the equation of state of nuclear matter is
encoded in the gravitational waves emitted just prior to the merger.Comment: RevTeX, to appear in PRD, 8 pages, 4 figures include
- …
