349 research outputs found

    The contribution of cause-effect link to representing the core of scientific paper—The role of Semantic Link Network

    Get PDF
    The Semantic Link Network is a general semantic model for modeling the structure and the evolution of complex systems. Various semantic links play different roles in rendering the semantics of complex system. One of the basic semantic links represents cause-effect relation, which plays an important role in representation and understanding. This paper verifies the role of the Semantic Link Network in representing the core of text by investigating the contribution of cause-effect link to representing the core of scientific papers. Research carries out with the following steps: (1) Two propositions on the contribution of cause-effect link in rendering the core of paper are proposed and verified through a statistical survey, which shows that the sentences on cause-effect links cover about 65% of key words within each paper on average. (2) An algorithm based on syntactic patterns is designed for automatically extracting cause-effect link from scientific papers, which recalls about 70% of manually annotated cause-effect links on average, indicating that the result adapts to the scale of data sets. (3) The effects of cause-effect link on four schemes of incorporating cause-effect link into the existing instances of the Semantic Link Network for enhancing the summarization of scientific papers are investigated. The experiments show that the quality of the summaries is significantly improved, which verifies the role of semantic links. The significance of this research lies in two aspects: (1) it verifies that the Semantic Link Network connects the important concepts to render the core of text; and, (2) it provides an evidence for realizing content services such as summarization, recommendation and question answering based on the Semantic Link Network, and it can inspire relevant research on content computing

    Production of 1,3-propanediol from glycerol by engineered

    Get PDF
    1,3-Propanediol (1,3-PD) has versatile applications in polymers, cosmetics, foods and medicines. In order to consolidate the functions of glycerol dehydratase gene dhaB and 1,3-propanediol oxidoreductase gene dhaT and produce 1,3-PD from glycerol, the genes dhaB and dhaT from Klebsiellapneumoniae were inserted into a co-expression vector pACYCDuet-1 synchronously and the recombinant strain E. coli/pACYCDuet-dhaB-dhaT was obtained. Both enzymes were functionally coexpressed in E. coli at the presence of the selective pressure and the addition of the IPTG. The specificenzyme activity of DHAB and DHAT were 8.3 and 6.2 U/mg, respectively. When cultivated at 37°C for 30 h, the recombinant microorganisms produced 1,3-PD of 11.3 g with the consumption of 40 g glycerol per liter. The production of 1,3-PD by the strain E. coli/pACYCDuet-dhaB-dhaT was about 13-fold higher than the recombinant E. coli harboring the gene dhaB

    Dynamic update of shortest path tree in OSPF

    Get PDF
    2003-2004 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    Gravitational Radiation from Triple Star Systems

    Get PDF
    We have studied the main features of the gravitational radiation generated by an astrophysical system constituted of three compact objects attracting one another (only via gravitational interaction) in such a manner that stable orbits do exist. We have limited our analysis to systems that can be treated with perturbative methods. We show the profile of the gravitational waves emitted by such systems. These results can be useful within the framework of the new gravitational astronomy which will be made feasible by means of the new generation of gravitational detectors such as LISA in a no longer far future.Comment: 10 pages plus 9 postscript figures; revtex; accepted for publication in Int. J. Mod. Phys.

    Binary Neutron-Star Systems: From the Newtonian Regime to the Last Stable Orbit

    Full text link
    We report on the first calculations of fully relativistic binary circular orbits to span a range of separation distances from the innermost stable circular orbit (ISCO), deeply inside the strong field regime, to a distance (∌\sim 200 km) where the system is accurately described by Newtonian dynamics. We consider a binary system composed of two identical corotating neutron stars, with 1.43 M⊙M_\odot gravitational mass each in isolation. Using a conformally flat spatial metric we find solutions to the initial value equations that correspond to semi-stable circular orbits. At large distance, our numerical results agree exceedingly well with the Newtonian limit. We also present a self consistent determination of the ISCO for different stellar masses.Comment: 4 pages, 3 postscript figures. Data points added to fig 2; some issues clarified; references adde

    Truncated post-Newtonian neutron star model

    Get PDF
    As a preliminary step towards simulating binary neutron star coalescing problem, we test a post-Newtonian approach by constructing a single neutron star model. We expand the Tolman-Oppenheimer-Volkov equation of hydrostatic equilibrium by the power of c−2c^{-2}, where cc is the speed of light, and truncate at the various order. We solve the system using the polytropic equation of state with index Γ=5/3,2\Gamma=5/3, 2 and 3, and show how this approximation converges together with mass-radius relations. Next, we solve the Hamiltonian constraint equation with these density profiles as trial functions, and examine the differences in the final metric. We conclude the second `post-Newtonian' approximation is close enough to describe general relativistic single star. The result of this report will be useful for further binary studies. (Note to readers) This paper was accepted for publication in Physical Review D. [access code dsj637]. However, since I was strongly suggested that the contents of this paper should be included as a section in our group's future paper, I gave up the publication.Comment: 5 pages, RevTeX, 3 eps figs, epsf.sty, accepted for publication in PRD (Brief Report), but will not appea

    Gravitational Radiation from Rotational Instabilities in Compact Stellar Cores with Stiff Equations of State

    Get PDF
    We carry out 3-D numerical simulations of the dynamical instability in rapidly rotating stars initially modeled as polytropes with n = 1.5, 1.0, and 0.5. The calculations are done with a SPH code using Newtonian gravity, and the gravitational radiation is calculated in the quadrupole limit. All models develop the global m=2 bar mode, with mass and angular momentum being shed from the ends of the bar in two trailing spiral arms. The models then undergo successive episodes of core recontraction and spiral arm ejection, with the number of these episodes increasing as n decreases: this results in longer-lived gravitational wave signals for stiffer models. This instability may operate in a stellar core that has expended its nuclear fuel and is prevented from further collapse due to centrifugal forces. The actual values of the gravitational radiation amplitudes and frequencies depend sensitively on the radius of the star R_{eq} at which the instability develops.Comment: 39 pages, uses Latex 2.09. To be published in the Dec. 15, 1996 issue of Physical Review D. 21 figures (bitmapped). Originals available in compressed Postscript format at ftp://zonker.drexel.edu/papers/bars

    Binary Neutron Stars in General Relativity: Quasi-Equilibrium Models

    Get PDF
    We perform fully relativistic calculations of binary neutron stars in quasi-equilibrium circular orbits. We integrate Einstein's equations together with the relativistic equation of hydrostatic equilibrium to solve the initial value problem for equal-mass binaries of arbitrary separation. We construct sequences of constant rest mass and identify the innermost stable circular orbit and its angular velocity. We find that the quasi-equilibrium maximum allowed mass of a neutron star in a close binary is slightly larger than in isolation.Comment: 4 pages, 3 figures, RevTe

    Gravitational radiation from corotating binary neutron stars of incompressible fluid in the first post-Newtonian approximation of general relativity

    Get PDF
    We analytically study gravitational radiation from corotating binary neutron stars composed of incompressible, homogeneous fluid in circular orbits. The energy and the angular momentum loss rates are derived up to the first post-Newtonian (1PN) order beyond the quadrupole approximation including effects of the finite size of each star of binary. It is found that the leading term of finite size effects in the 1PN order is only O(GM∗/c2a∗)O(GM_{\ast}/c^2 a_{\ast}) smaller than that in the Newtonian order, where GM∗/c2a∗GM_{\ast}/c^2 a_{\ast} means the ratio of the gravitational radius to the mean radius of each star of binary, and the 1PN term acts to decrease the Newtonian finite size effect in gravitational radiation.Comment: 26 pages, revtex, 9 figures(eps), accepted for publication in Phys. Rev.

    General Relativistic Models of Binary Neutron Stars in Quasiequilibrium

    Get PDF
    We perform fully relativistic calculations of binary neutron stars in corotating, circular orbit. While Newtonian gravity allows for a strict equilibrium, a relativistic binary system emits gravitational radiation, causing the system to lose energy and slowly spiral inwards. However, since inspiral occurs on a time scale much longer than the orbital period, we can treat the binary to be in quasiequilibrium. In this approximation, we integrate a subset of the Einstein equations coupled to the relativistic equation of hydrostatic equilibrium to solve the initial value problem for binaries of arbitrary separation. We adopt a polytropic equation of state to determine the structure and maximum mass of neutron stars in close binaries for polytropic indices n=1, 1.5 and 2. We construct sequences of constant rest-mass and locate turning points along energy equilibrium curves to identify the onset of orbital instability. In particular, we locate the innermost stable circular orbit (ISCO) and its angular velocity. We construct the first contact binary systems in full general relativity. These arise whenever the equation of state is sufficiently soft >= 1.5. A radial stability analysis reveals no tendency for neutron stars in close binaries to collapse to black holes prior to merger.Comment: 14 pages, 8 figures, RevTe
    • 

    corecore