449 research outputs found
Species-Rich Plantings Increase Biomass and Nitrogen Accumulation in a Wetland Restoration Experiment
Our test of the hypothesis that biomass and nitrogen would increase with more species-rich plantings simultaneously vegetated a salt marsh restoration site and demonstrated that on average, randomly chosen, 6-species plantings accumulated more biomass and nitrogen than the mean for 0- and 1-species assemblages, with the mean for 3-species assemblages being intermediate. In addition, we found that individual species (from the pool of eight native halophytes) differed in their functional capacity, with Salicornia virginica (Sv) and Jaumea carnosa contributing the greatest biomass when planted alone, while Triglochin concinna had the highest tissue N concentrations. When planted alone, Sv accumulated comparable amounts of biomass and nitrogen as in the multispecies plots, indicating that individual species can have a large effect on particular functions. Soil TKN in the surface 0–5 cm was greater in 6-species plots than unplanted plots in 1999, while both 3- and 6-species plots were greater than unplanted plots in 2000; however, there were no differences at 5–20 cm depth and no species-specific effects. Root and shoot biomass both increased with species richness, with total biomass of 6-species plots averaging 995.6 ± 120.5 g/m2 in 2000, compared to the mean for 1-species plots (572.1 ± 90.3 g/m2) and unplanted plots (164.5 ± 24.7 g/m2). Still, at the age of three years, root biomass was only about one-third that of the species-rich reference site, and shoot biomass was one-half to one-fifth the maxima reported for reference salt marshes. Species-specific effects were found for Sv, which had high biomass of both roots and shoots in the multispecies plots (55% of aboveground biomass in 3-species plots and 41% in 6-species plots) and the highest pool of N (52% of the N pool in 3-species plots and 42% in 6-species plots), even though only one-eighth of the initial plantings were Sv. However, when plots with this species were excluded from the analysis, the species-richness effect persisted. Thus, ecosystem function, as measured by biomass and N accumulation, increased with species richness regardless of dominance by the highly productive Sv. We conclude that manipulating the richness and composition of plantings offers ecosystem restorationists an effective tool for accelerating the rate of functional development
Plant Assemblage Composition Explains and Predicts How Biodiversity Affects Salt Marsh Functioning
Knowing that diverse plantings enhanced biomass and nitrogen (N) accumulation in a restored California salt marsh, we asked if the “biodiversity effect” was due to species selection or complementarity. In a two-year greenhouse experiment, we found positive biodiversity effects on total, root, and shoot biomass, total and root N crop, and on biomass and N allocation; negative effects on root and shoot N concentration; and no effect on shoot N crop. Overyielding among trios and sextets was supported by significant deviations in observed yield from that expected relative to solo yields (DT). However, both trios and sextets strongly underyielded relative to the highest yielding solo in the assemblage (Dmax) in all attributes, and to the dominant species in the assemblage (Ddom) in most attributes. When we decomposed biodiversity effects on shoot characteristics, selection effects primarily drove over- and underyielding. The only complementarity effect was underyielding of sextet shoot biomass. These analyses were possible because we replicated assemblages and evaluated 11 response variables. One species (Salicornia virginica) dominated functioning when present; when absent, another dominated (e.g., Frankenia salina). Effects varied with the response tested, however. For both shoot biomass and N crop, S. virginica was the dominant overyielding species (based on Dij and comparisons of trios ± target species). For shoot N concentration, however, the dominant was Triglochin concinna, a species that had low biomass but was capable of reducing assemblage performance, presumably by concentrating N.
Evidence for strong species selection effects led us to predict that three species would eventually dominate our parallel field experiment that tested the same assemblages. Exactly that happened in nine years, but (we predict) without losing function, because the site retained the three highest-performing species. Biodiversity loss was nonrandom in the field, and because trios with two top performers sustained critical functions in the greenhouse, we predict that many functions will not decline, even if the salt marsh becomes dominated by a single species, e.g., S. virginica. Unmeasured functions (e.g., resilience) might not persist, however. Knowing how assemblages perform made biodiversity–ecosystem function theory both explanatory and predictive
Diversity-Function Relationships Changed in a Long-Term Restoration Experiment
The central tenet of biodiversity-ecosystem function (BEF) theory, that species richness increases function, could motivate restoration practitioners to incorporate a greater number of species into their projects. But it is not yet clear how well BEF theory predicts outcomes of restoration, because it has been developed through tests involving short-run and tightly controlled (e.g., weeded) experiments. Thus, we resampled our 1997 BEF experiment in a restored salt marsh to test for long-term effects of species richness (plantings with 1, 3, and 6 species per 2 x 2 m plot), with multiple ecosystem functions as response variables. Over 11 years, 1- and 6-species assemblages converged on intermediate richness (mean = 3.9 species/ 0.25-m2 plot), and composition changed nonrandomly throughout the site. While three species became rare, the two most productive species became co-dominant. The two dominants controlled and increased shoot biomass, which appeared to decrease species richness. Diversity-function relationships became less positive over 11 years and differed significantly with (a) the species-richness metric (planted vs. measured), and (b) the indicator of function (shoot biomass, height, and canopy layering). The loss of positive relationships between species richness and function in our restored site began soon after we stopped weeding and continued with increasing dominance by productive species. Where species-rich plantings are unlikely to ensure long-term restoration of functions, as in our salt marsh, we recommend dual efforts to establish (1) dominant species that provide high levels of target functions, and (2) subordinate species, which might provide additional functions under current or future conditions
Systematic Perturbation Theory for Dynamical Coarse-Graining
We demonstrate how the dynamical coarse-graining approach can be
systematically extended to higher orders in the coupling between system and
reservoir. Up to second order in the coupling constant we explicitly show that
dynamical coarse-graining unconditionally preserves positivity of the density
matrix -- even for bath density matrices that are not in equilibrium and also
for time-dependent system Hamiltonians. By construction, the approach correctly
captures the short-time dynamics, i.e., it is suitable to analyze non-Markovian
effects. We compare the dynamics with the exact solution for highly
non-Markovian systems and find a remarkable quality of the coarse-graining
approach. The extension to higher orders is straightforward but rather tedious.
The approach is especially useful for bath correlation functions of simple
structure and for small system dimensions.Comment: 17 pages, 5 figures, version accepted for publication in PR
Recommended from our members
Monitoring the chemistry of self-healing by vibrational spectroscopy - Current state and perspectives
Self-healing materials are designed to heal damage caused by, for example, mechanical stress or aging such that the original functionality of the material is at least partially restored. Thus, self-healing materials hold great promise for prolonging the lifetime of machines, particularly those in remote locations, as well as in increasing the reliability and safety associated with functional materials in, for example, aeronautics applications. Recent material science applications of self-healing have led to an increased interest in the field and, consequently, the spectroscopic characterization of a wide range of self-healing materials with respect to their mechanical properties such as stress and strain resistance and elasticity was in the focus. However, the characterization of the chemical mechanisms underlying various self-healing processes locally within the damaged region of materials still presents a major challenge. This requires experimental techniques that work non-destructively in situ and are capable of revealing the chemical composition of a sample with sufficient spatial and temporal resolution without disturbing the healing process. Along these lines, vibrational spectroscopy and, in particular Raman spectroscopy, holds great promise, largely due to the high spatial resolution in the order of several hundreds of nanometers that can be obtained. This article aims to summarize the state of the art and prospective of Raman spectroscopy to contribute significant insights to the research on self-healing materials - in particular focusing on polymer and biopolymer materials
Upper-ocean response to Hurricane Frances (2004) observed by Profiling EM-APEX floats
Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 41 (2011): 1041–1056, doi:10.1175/2010JPO4313.1.Three autonomous profiling Electromagnetic Autonomous Profiling Explorer (EM-APEX) floats were air deployed one day in advance of the passage of Hurricane Frances (2004) as part of the Coupled Boundary Layer Air–Sea Transfer (CBLAST)-High field experiment. The floats were deliberately deployed at locations on the hurricane track, 55 km to the right of the track, and 110 km to the right of the track. These floats provided profile measurements between 30 and 200 m of in situ temperature, salinity, and horizontal velocity every half hour during the hurricane passage and for several weeks afterward. Some aspects of the observed response were similar at the three locations—the dominance of near-inertial horizontal currents and the phase of these currents—whereas other aspects were different. The largest-amplitude inertial currents were observed at the 55-km site, where SST cooled the most, by about 2.2°C, as the surface mixed layer deepened by about 80 m. Based on the time–depth evolution of the Richardson number and comparisons with a numerical ocean model, it is concluded that SST cooled primarily because of shear-induced vertical mixing that served to bring deeper, cooler water into the surface layer. Surface gravity waves, estimated from the observed high-frequency velocity, reached an estimated 12-m significant wave height at the 55-km site. Along the track, there was lesser amplitude inertial motion and SST cooling, only about 1.2°C, though there was greater upwelling, about 25-m amplitude, and inertial pumping, also about 25-m amplitude. Previously reported numerical simulations of the upper-ocean response are in reasonable agreement with these EM-APEX observations provided that a high wind speed–saturated drag coefficient is used to estimate the wind stress. A direct inference of the drag coefficient CD is drawn from the momentum budget. For wind speeds of 32–47 m s−1, CD ~ 1.4 × 10−3.The Office of Naval Research
supported the development of the EM-APEX float
system through SBIR Contract N00014-03-C-0242 to
Webb Research Corporation and with a subcontract
to APL-UW. Sanford
and J. Girton were supported by the Office of Naval
Research through GrantsN00014-04-1-0691 and N00014-
07-1-024, and J. Price was supported through Grant
N00014-04-1-0109
Highly resolved observations and simulations of the ocean response to a hurricane
Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 34 (2007): L13604, doi:10.1029/2007GL029679.An autonomous, profiling float called EM-APEX was developed to provide a quantitative and comprehensive description of the ocean side of hurricane-ocean interaction. EM-APEX measures temperature, salinity and pressure to CTD quality and relative horizontal velocity with an electric field sensor. Three prototype floats were air-deployed into the upper ocean ahead of Hurricane Frances (2004). All worked properly and returned a highly resolved description of the upper ocean response to a category 4 hurricane. At a float launched 55 km to the right of the track, the hurricane generated large amplitude, inertially rotating velocity in the upper 120 m of the water column. Coincident with the hurricane passage there was intense vertical mixing that cooled the near surface layer by about 2.2°C. We find consistent model simulations of this event provided the wind stress is computed from the observed winds using a high wind-speed saturated drag coefficient.The development of the EM-APEX float
system was supported by the Office of Naval Research through SBIR
contract N00014-03-C-0242 to Webb Research Corporation and with a
subcontract to APL-UW
The potential role of T-cells and their interaction with antigen-presenting cells in mediating immunosuppression following trauma-hemorrhage
Objective: Trauma-hemorrhage results in depressed immune responses of antigen-presenting cells (APCs) and T-cells. Recent studies suggest a key role of depressed T-cell derived interferon (IFN)-g in this complex immune cell interaction. The aim of this study was to elucidate further the underlying mechanisms responsible for dysfunctional T-cells and their interaction with APCs following trauma-hemorrhage.
Design: Adult C3H/HeN male mice were subjected to trauma-hemorrhage (3-cm midline laparotomy) followed by hemorrhage (blood pressure of 35�5mmHg for 90 min and resuscitation) or sham operation. At 24 h thereafter, spleens were harvested and T-cells (by Microbeads) and APCs (via adherence) were Isolated. Co-cultures of T-cells and APCs were established for 48 h and stimulated with concanavalin A and lipopolysaccharide. T-Cell specific cytokines known to affect APC function (i.e. interleukin(IL)-2, IL-4 and granulocyte-macrophage colony-stimulating factor (GM-CSF)) were measured in culture supernatants by Multiplex assay. The expression of MHC class II as well as co-stimulatory surface molecules on T-cells and APCs was determined by flow cytometry.
Results: The release of IL-4 and GM-CSF by T-cells was suppressed following trauma-hemorrhage, irrespective of whether sham or trauma-hemorrhage APCs were present. Antigen-presenting cells from animals subjected to trauma-hemorrhage did not affect T-cell derived cytokine release by sham T-cells. In contrast, T-cells from traumahemorrhage animals depressed MHC class II expression of CD11c(þ) cells, irrespective of whether APCs underwent sham or trauma-hemorrhage procedure. Surprisingly, co-stimulatory molecules on APCs (CD80, CD86) were not affected by trauma-hemorrhage.
Conclusions: These results suggest that beside IFN-g other T-cell derived cytokines contribute to immunosuppression following trauma-hemorrhage causing diminished MHC II expression on APCs. Thus, T-cells appear to play an important role in this interaction at the time-point examined. Therapeutic approaches should aim at maintenance of T-cell function and their interaction with APCs to prevent extended immunosuppression following trauma-hemorrhage
Salt marsh restoration surprise: A subordinate species accumulates and shares nitrogen while outcompeting salt marsh dominants
Selectively planting native species could guide ecosystem development toward wetland restoration targets, once we understand how influential species function, alone and in combination. Knowing that Triglochin concinna (arrow grass, Juncaceae) accumulates N in its perennial roots, we asked how it would influence N dynamics on an excavated salt marsh plain at Tijuana Estuary, in southern California. We hypothesized that it would (a) accumulate N in roots and shoots, (b) reduce biomass of other marsh plain plants or, alternatively, (c) share N with neighbors as its litter decomposed and released N. We used 15N stable isotope enrichment to quantify N transfer between Triglochin and the marsh plain’s seven-species halophyte assemblage in field and greenhouse experiments. We also examined the effect of Triglochin on individual marsh plain species’ biomass and N accumulation. Triglochin had low shoot biomass (0.96 ± 0.5 g m−2 in field plots and 17.64 ± 2.2 g m−2 in greenhouse pots), high root:shoot ratios (4.3 in the field and 2.0 in the greenhouse), and high tissue N content (1.9 ± 0.2% in the field and 1.7 ± 0.1% in the greenhouse). Two productive perennials, Sarcocornia pacifica (pickleweed) and Frankenia salina (alkali heath), outgrew Triglochin; yet these biomass dominants produced 44%–45% less shoot biomass in greenhouse pots with Triglochin than without. However, we did not find this reduction in the field where roots were unconfined. In the greenhouse, δ15N values were higher for species grown with 15N-enriched Triglochin, indicating that this species made N available to its neighbors. The δ15N values for plants grown in the field exceeded background levels, also indicating that the marsh plain assemblage took up N released by Triglochin. We conclude that Triglochin can influence the restoration of salt marsh vegetation by accumulating N and releasing its tissue N to neighbors as leaves and roots decompose, while simultaneously reducing the biomass of neighbors. The seasonally deciduous Triglochin is low in shoot biomass, yet competitively superior in N uptake. Because this often-ignored species has limited tidal dispersal, we suggest restoration plantings, including tests of its ability to facilitate diversity where S. pacifica, the marsh plain dominant, might otherwise form monocultures
- …