799 research outputs found
Bose-Einstein Correlations of Pion Wavepackets
A wavepacket model for a system of free pions, which takes into account the
full permutation symmetry of the wavefunction and which is suitable for any
phase space parametrization is developed. The properties of the resulting mixed
ensembles and the two-particle correlation function are discussed. A physical
interpretation of the chaoticity lambda as localizat of the pions in the source
is presented.
Two techniques to generate test-particles, which satisfy the probability
densities of the wavepacket state, are studied:
1. A Monte Carlo procedure in momentum space based on the standard Metropolis
technique.
2. A molecular dynamic procedure using Bohm's quantum theory of motion.
In order to reduce the numerical complexity, the separation of the
wavefunction into momentum space clusters is discussed. In this context th
influence of an unauthorized factorization of the state, i. e. the omissio of
interference terms, is investigated. It is shown that the correlation radius
remains almost uneffected, but the chaoticity parameter decreases
substantially. A similar effect is observed in systems with high multiplic
where the omission of higher order corrections in the analysis of two-part
correlations causes a reduction of the chaoticity and the radius.
The approximative treatment of the Coulomb interaction between pions and
source is investigated. The results suggest that Coulomb effects on the co
radii are not symmetric for pion pairs of different charges. For negative the
radius, integrated over the whole momentum spectrum, increases substan while
for positive pions the radius remains almost unchanged.Comment: 15 pages, 8 figures, 0.8 Mb, uses ljour2-macro, Submitted to Z. Phys.
A (1997
Testing the Resolving Power of 2-D K^+ K^+ Interferometry
Adopting a procedure previously proposed to quantitatively study
two-dimensional pion interferometry, an equivalent 2-D chi^2 analysis was
performed to test the resolving power of that method when applied to less
favorable conditions, i.e., if no significant contribution from long lived
resonances is expected, as in kaon interferometry. For that purpose, use is
made of the preliminary E859 K^+ K^+ interferometry data from Si+Au collisions
at 14.6 AGeV/c. As expected, less sensitivity is achieved in the present case,
although it still is possible to distinguish two distinct decoupling
geometries. The present analysis seems to favor scenarios with no resonance
formation at the AGS energy range, if the preliminary K^+ K^+ data are
confirmed. The possible compatibility of data with zero decoupling proper time
interval, conjectured by the 3-D experimental analysis, is also investigated
and is ruled out when considering more realistic dynamical models with
expanding sources. These results, however, clearly evidence the important
influence of the time emission interval on the source effective transverse
dimensions. Furthermore, they strongly emphasize that the static Gaussian
parameterization, commonly used to fit data, cannot be trusted under more
realistic conditions, leading to distorted or even wrong interpretation of the
source parameters!Comment: 11 pages, RevTeX, 4 Postscript figures include
Multi-boson effects and the normalization of the two-pion correlation function
The two-pion correlation function can be defined as a ratio of either the
measured momentum distributions or the normalized momentum space probabilities.
We show that the first alternative avoids certain ambiguities since then the
normalization of the two-pion correlator contains important information on the
multiplicity distribution of the event ensemble which is lost in the second
alternative. We illustrate this explicitly for specific classes of event
ensembles.Comment: 6 pages, three figures,submit to PR
Analytic Solution of the Pion-Laser Model
Brooding over bosons, wave packets and Bose - Einstein correlations, we find
that a generalization of the pion-laser model for the case of overlapping
wave-packets is analytically solvable with complete n-particle symmetrization.
The effective radius parameter of the two-particle correlation function is
reduced for low values and enlargened for high values of the mean momentum in
the rare gas limiting case, as compared to the case when multi-particle
symmetrization effects are neglected.
These results explicitly depend on the multiplicity, providing a theoretical
basis for event-by-event analysis of high energy heavy ion reactions.Comment: LaTeX, ReVTeX 3.1, 7 pages, uses 1 eps figure and epsfig.sty
(shortened version
Hanbury-Brown--Twiss Analysis in a Solvable Model
The analysis of meson correlations by Hanbury-Brown--Twiss interferometry is
tested with a simple model of meson production by resonance decay. We derive
conditions which should be satisfied in order to relate the measured momentum
correlation to the classical source size. The Bose correlation effects are
apparent in both the ratio of meson pairs to singles and in the ratio of like
to unlike pairs. With our parameter values, we find that the single particle
distribution is too distorted by the correlation to allow a straightforward
analysis using pair correlation normalized by the singles rates. An analysis
comparing symmetrized to unsymmetrized pairs is more robust, but nonclassical
off-shell effects are important at realistic temperatures.Comment: 21 pages + 9 figures (tarred etc. using uufiles, submitted
separately), REVTeX 3.0, preprint number: DOE/ER/40561-112/INT93-00-3
Bose-Einstein source of intermittency in hadronic interactions
The multi-particle Bose-Einstein correlations are the source of
''intermittency'' in high energy hadronic collisions. The power-law like
increase of factorial moments with decreasing bin size was obtained by complete
event weighing technique with gaussian approximation of space-time particle
emitting source shape. The value of source size parameter was found to be
higher than the common one fitted with the help of the standard Handbury
Brown-Twiss procedure.Comment: 12
Quark-Gluon Plasma at RHIC and the LHC: Perfect Fluid too Perfect?
Relativistic heavy ion collisions have reached energies that enable the
creation of a novel state of matter termed the quark-gluon plasma. Many
observables point to a picture of the medium as rapidly equilibrating and
expanding as a nearly inviscid fluid. In this article, we explore the evolution
of experimental flow observables as a function of collision energy and attempt
to reconcile the observed similarities across a broad energy regime in terms of
the initial conditions and viscous hydrodynamics. If the initial spatial
anisotropies are very similar for all collision energies from 39 GeV to 2.76
TeV, we find that viscous hydrodynamics might be consistent with the level of
agreement for v2 of unidentified hadrons as a function of pT . However, we
predict a strong collision energy dependence for the proton v2(pT). The results
presented in this paper highlight the need for more systematic studies and a
re-evaluation of previously stated sensitivities to the early time dynamics and
properties of the medium.Comment: 11 pages, 9 figures, submitted to the New Journal of Physics focus
issue "Strongly Correlated Quantum Fluids: From Ultracold Quantum Gases to
QCD Plasmas
Quantum-Statistical Correlations and Single Particle Distributions for Slowly Expanding Systems with Temperature Profile
Competition among particle evaporation, temperature gradient and flow is
investigated in a phenomenological manner, based on a simultaneous analysis of
quantum statistical correlations and momentum distributions for a
non-relativistic, spherically symmetric, three-dimensionally expanding, finite
source. The parameters of the model emission function are constrained by fits
to neutron and proton momentum distributions and correlation functions in
intermediate energy heavy-ion collisions. The temperature gradient is related
to the momentum dependence of the radius parameters of the two-particle
correlation function, as well as to the momentum-dependent temperature
parameter of the single particle spectrum, while a long duration of particle
evaporation is found to be responsible for the low relative momentum behavior
of the two-particle correlations.Comment: 20 pages + 5 ps figures, ReVTeX, uses psfig.sty, the description is
extended to include final state interactions, phenomenological evaporation
and to fit intermediate energy heavy ion proton and neutron spectrum and
correlation dat
Exploring the QCD landscape with high-energy nuclear collisions
Quantum chromodynamics (QCD) phase diagram is usually plotted as temperature
(T) versus the chemical potential associated with the conserved baryon number
(\mu_{B}). Two fundamental properties of QCD, related to confinement and chiral
symmetry, allows for two corresponding phase transitions when T and \mu_{B} are
varied. Theoretically the phase diagram is explored through non-perturbative
QCD calculations on lattice. The energy scale for the phase diagram
(\Lambda_{QCD} ~ 200 MeV) is such that it can be explored experimentally by
colliding nuclei at varying beam energies in the laboratory. In this paper we
review some aspects of the QCD phase structure as explored through the
experimental studies using high energy nuclear collisions. Specifically, we
discuss three observations related to the formation of a strongly coupled
plasma of quarks and gluons in the collisions, experimental search for the QCD
critical point on the phase diagram and freeze-out properties of the hadronic
phase.Comment: Submitted to the New Journal of Physics focus issue "Strongly
Correlated Quantum Fluids: From Ultracold Quantum Gases to QCD Plasmas
- …