273,424 research outputs found
The fuzzy boundary: the spatial definition of urban areas
Cities seem to have some kind of area structure, usually distinguished in terms of land use types, socio-economic variables, physical appearance or historical and culturalcharacteristics. Is there any possibility that urban areas could in general be differentiated from the spatial perspective? What is the nature of boundaries between areas in terms of space? These questions could be approached by the analysis of internal or contextual spatial structure, or the relation between the two. Most studies on area structure however had focused in the main on the internal area with a secondaryrole for the context. Is there any way in which we could give more explicit attention to the context, following the clue that had come out of the earlier studies?This paper is to try to develop spatial techniques for identifying area boundaries, and looking at their performance in both the traditional areas, such as the Central London and the Inner City of Beijing, and the new development of the London Docklands. It focuses on explicitly exploring the properties of contextual structure in the formation ofarea boundaries rather than simply the properties of internal structure. After much experimentation, a new technique was arrived at for exploring properties of the context. Each axial line or segment in the whole map is taken as the root of a graph, and the numbers of axial lines, or segments, found with increasing radius from the root is calculated, and expressed as a rate of change. This rate of change value is thenassigned to the original axial line and expressed through bands of color. The results show strong areal effects, in that groups of neighbouring lines tend to have similar coloring, and in many cases, these suggest natural areas.Through the case studies, this paper suggests that historic areas typically have what we will call fuzzy boundaries. Fuzzy boundaries arise from the way space is structured internally and how this relates to the external structure of space. Such boundaries can be effective in supporting functional differentiation of areas or the growth of areal identities and characters, but do not depend on the area being either spatially self contained or geometrically differentiated, or having clear spatial limits. It is the relation of urban areas and their further surroundings that determine fuzzy boundaries of these urban areas
Analytical investigation for multiplicity difference correlators under QGP phase transition
It is suggested that the study of multiplicity difference correlators between
two well-separated bins in high-energy heavy-ion collisions can be used as a
means to detect evidence of a quark-hadron phase transition. Analytical
expressions for the scaled factorial moments of multiplicity difference
distribution are obtained in a kinetical region within
Ginzburg-Landau description. It is shown that the scaling behaviors between the
moments are still valid, though the behaviors of the moments with respect to
the bin size are completely different from the so-called intermittency
patterns. A universal exponent is given to describe the dynamical
fluctuations in the phase transition.Comment: 5 pages, RevTeX, three figures in EPS forma
Quark Coalescence with Quark Number Conservation and the Effect on Quark-Hadron Scaling
We develop a new formulation of the quark coalescence model by including the
quark number conservation in order to describe the hadronization of the bulk of
the quark-gluon plasma. The scalings between hadron and quark phase space
distributions are shown to depend on the transverse momentum. For hard quarks,
our general scalings reproduce the usual quadratic scaling relation for mesons
and the cubic scaling relation for baryons. For softer quarks, however, the
inclusion of the quark number conservation leads to a linear scaling for the
hadron species that dominates the quark number of each flavor, while the
scalings of non-dominant hadrons depend on the coalescence dynamics. For charm
mesons, we find that the distribution of soft mesons does not depend on the
light quark distribution but the distribution of soft mesons is
inversely correlated to the light quark distribution.Comment: Added 6 more equations to explain the derivations; added discussions;
final published versio
Bayesian Conditional Tensor Factorizations for High-Dimensional Classification
In many application areas, data are collected on a categorical response and
high-dimensional categorical predictors, with the goals being to build a
parsimonious model for classification while doing inferences on the important
predictors. In settings such as genomics, there can be complex interactions
among the predictors. By using a carefully-structured Tucker factorization, we
define a model that can characterize any conditional probability, while
facilitating variable selection and modeling of higher-order interactions.
Following a Bayesian approach, we propose a Markov chain Monte Carlo algorithm
for posterior computation accommodating uncertainty in the predictors to be
included. Under near sparsity assumptions, the posterior distribution for the
conditional probability is shown to achieve close to the parametric rate of
contraction even in ultra high-dimensional settings. The methods are
illustrated using simulation examples and biomedical applications
Field-ionization threshold and its induced ionization-window phenomenon for Rydberg atoms in a short single-cycle pulse
We study the field-ionization threshold behavior when a Rydberg atom is
ionized by a short single-cycle pulse field. Both hydrogen and sodium atoms are
considered. The required threshold field amplitude is found to scale
\emph{inversely} with the binding energy when the pulse duration becomes
shorter than the classical Rydberg period, and, thus, more weakly bound
electrons require larger fields for ionization. This threshold scaling behavior
is confirmed by both 3D classical trajectory Monte Carlo simulations and
numerically solving the time-dependent Schr\"{o}dinger equation. More
surprisingly, the same scaling behavior in the short pulse limit is also
followed by the ionization thresholds for much lower bound states, including
the hydrogen ground state. An empirical formula is obtained from a simple
model, and the dominant ionization mechanism is identified as a nonzero spatial
displacement of the electron. This displacement ionization should be another
important mechanism beyond the tunneling ionization and the multiphoton
ionization. In addition, an "ionization window" is shown to exist for the
ionization of Rydberg states, which may have potential applications to
selectively modify and control the Rydberg-state population of atoms and
molecules
Imperfection Information, Optimal Monetary Policy and Informational Consistency
This paper examines the implications of imperfect information (II) for optimal monetary policy with a consistent set of informational assumptions for the modeller and the private sector an assumption we term the informational consistency. We use an estimated simple NK model from Levine et al. (2012), where the assumption of symmetric II significantly improves the fit of the model to US data to assess the welfare costs of II under commitment, discretion and simple Taylor-type rules. Our main results are: first, common to all information sets we find significant welfare gains from commitment only with a zero-lower bound constraint on the interest rate. Second, optimized rules take the form of a price level rule, or something very close across all information cases. Third, the combination of limited information and a lack of commitment can be particularly serious for welfare. At the same time we find that II with lags introduces a ‘tying ones hands’ effect on the policymaker that may improve welfare under discretion. Finally, the impulse response functions under our most extreme imperfect information assumption (output and inflation observed with a two-quarter delay) exhibit hump-shaped behaviour and the fiscal multiplier is significantly enhanced in this case
- …
