152 research outputs found
Surface-Initiated Polymer Brushes in the Biomedical Field: Applications in Membrane Science, Biosensing, Cell Culture, Regenerative Medicine and Antibacterial Coatings
Switching Transport through Nanopores with pH-Responsive Polymer Brushes for Controlled Ion Permeability
Several nanoporous platforms were functionalized with pH-responsive poly(methacrylic acid) (PMAA) brushes using surface-initiated atom transfer radical polymerization (SI-ATRP). The growth of the PMAA brush and its pH-responsive behavior from the nanoporous platforms were confirmed by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and atomic force microscopy (AFM). The swelling behavior of the pH-responsive PMAA brushes grafted only from the nanopore walls was investigated by AFM in aqueous liquid environment with pH values of 4 and 8. AFM images displayed open nanopores at pH 4 and closed ones at pH 8, which rationalizes their use as gating platforms. Ion conductivity across the nanopores was investigated with current–voltage measurements at various pH values. Enhanced higher resistance across the nanopores was observed in a neutral polymer brush state (lower pH values) and lower resistance when the brush was charged (higher pH values). By adding a fluorescent dye in an environment of pH 4 or pH 8 at one side of the PMAA-brush functionalized nanopore array chips, diffusion across the nanopores was followed. These experiments displayed faster diffusion rates of the fluorescent molecules at pH 4 (PMAA neutral state, open pores) and slower diffusion at pH 8 (PMAA charged state, closed pores) showing the potential of this technology toward nanoscale valve applications
One step ATRP initiator immobilization on surfaces leading to gradient-grafted polymer brushes
Published: April 30, 2014A method is described that allows potentially any surface to be functionalized covalently with atom transfer radical polymerization (ATRP) initiators derived from ethyl-2-bromoisobutyrl bromide in a single step. In addition, the initiator surface density was variable and tunable such that the thickness of polymer chain grafted from the surface varied greatly on the surfaces providing examples, across the surface of a substrate, of increased chain stretching due to the entropic nature of crowded polymer chains leading toward polymer brushes. An initiator gradient of increasing surface density was deposited by plasma copolymerization of an ATRP initiator (ethyl 2-bromoisobutyrate) and a non-ATRP reactive diluent molecule (ethanol). The deposited plasma polymer retained its chemical ability to surface-initiate polymerization reactions as exemplified by N,N'-dimethyl acrylamide and poly(ethylene glycol) methyl ether methacrylate polymerizations, illustrating linear and bottle-brush-like chains, respectively. A large variation in graft thickness was observed from the low to high chain-density side suggesting that chains were forced to stretch away from the surface interface--a consequence of entropic effects resulting from increased surface crowding. The tert-butyl bromide group of ethyl 2-bromoisobutyrate is a commonly used initiator in ATRP, so a method for covalent linkage to any substrate in a single step desirably simplifies the multistep surface activation procedures currently used.Bryan R. Coad, Katie E. Styan, and Laurence Meaghe
Combined QCM-D/GE as a tool to characterize stimuli-responsive swelling of and protein adsorption on polymer brushes grafted onto 3D-nanostructures
Novel Polymer systems and surface modifications of planar and porous substrates for advanced applications
Effect of the electrostatic microenvironment on the observed redox potential of electroactive supramolecular bioconjugates
Thermoreversible formation and negative thermal expansion of supramacromolecular assemblies of unimolecular micelles in solution
Diels-Alder reactions for carbon material synthesis and surface functionalization
To meet the ever growing demand for carbon nanomaterials with tailored properties, Diels-Alder reactions are emerging as an efficient alternative to other synthetic methods. From an application perspective, the development of convenient surface functionalization strategies for carbon nanostructures is of paramount importance. Pristine carbon nanostructures display a natural tendency to undergo Diels-Alder reactions with a range of functional dienes and dienophiles without the need of a catalyst. This has sparked significant scientific interest in exploiting the Diels-Alder reaction as a powerful strategy for their synthesis as well as for their subsequent surface functionalization. The present review highlights the remarkable role of Diels-Alder reactions for the synthesis of fullerenes, carbon nanotubes and graphene, and its promise as a facile carbon nanostructure functionalization strategy with small molecules and polymer chains. A critical overview of the recent developments evidencing the potential of Diels-Alder reactions as an efficient route to carbon based functional materials is presented. © 2013 The Royal Society of Chemistry
Thermoreversible formation and negative thermal expansion of supramacromolecular assemblies of unimolecular micelles in solution
- …
