1,786 research outputs found
Stabilized lasers for advanced gravitational wave detectors
Second-generation interferometric gravitational wave detectors require high-power lasers with approximately 200 W of output power in a linear polarized, single-frequency, fundamental-mode laser beam. Furthermore very high temporal and spatial stability is required. This paper discusses the design of a 200 W pre-stabilized laser (PSL) system and the underlying concepts. The PSL requirements for advanced gravitational wave detectors as well as for the laser system are described. The laser stabilization scheme proposed for the Advanced LIGO gravitational wave detector and the so-called diagnostic breadboard will serve as examples to explain the general laser stabilization concepts and the achieved performance and its limitations
Laser power stabilization for second-generation gravitational wave detectors
We present results on the power stabilization of a Nd:YAG laser in the frequency band from 1 Hz to 100 kHz. High-power, low-noise photodetectors are used in a dc-coupled control loop to achieve relative power fluctuations down to 5×10−9 Hz−1/2 at 10 Hz and 3.5×10−9 Hz−1/2 up to several kHz, which is very close to the shot-noise limit for 80 mA of detected photocurrent on each detector. We investigated and eliminated several noise sources such as ground loops and beam pointing. The achieved stability level is close to the requirements for the Advanced LIGO gravitational wave detector
Frequency stabilization of a monolithic Nd:YAG ring laser by controlling the power of the laser-diode pump source
The frequency of a 700mW monolithic non-planar Nd:YAG ring laser (NPRO)
depends with a large coupling coefficient (some MHz/mW) on the power of its
laser-diode pump source. Using this effect we demonstrate the frequency
stabilization of an NPRO to a frequency reference by feeding back to the
current of its pump diodes. We achieved an error point frequency noise smaller
than 1mHz/sqrt(Hz), and simultaneously a reduction of the power noise of the
NPRO by 10dB without an additional power stabilization feed-back system.Comment: accepted for publication by Optics Letter
Frequency domain interferometer simulation with higher-order spatial modes
FINESSE is a software simulation that allows to compute the optical
properties of laser interferometers as they are used by the interferometric
gravitational-wave detectors today. It provides a fast and versatile tool which
has proven to be very useful during the design and the commissioning of
gravitational-wave detectors. The basic algorithm of FINESSE numerically
computes the light amplitudes inside an interferometer using Hermite-Gauss
modes in the frequency domain. In addition, FINESSE provides a number of
commands to easily generate and plot the most common signals like, for example,
power enhancement, error or control signals, transfer functions and
shot-noise-limited sensitivities.
Among the various simulation tools available to the gravitational wave
community today, FINESSE is the most advanced general optical simulation that
uses the frequency domain. It has been designed to allow general analysis of
user defined optical setups while being easy to install and easy to use.Comment: Added an example for the application of the simulation during the
commisioning of the GEO 600 gravitational-wave detecto
Performance of the WaveBurst algorithm on LIGO data
In this paper we describe the performance of the WaveBurst algorithm which
was designed for detection of gravitational wave bursts in interferometric
data. The performance of the algorithm was evaluated on the test data set
collected during the second LIGO Scientific run. We have measured the false
alarm rate of the algorithm as a function of the threshold and estimated its
detection efficiency for simulated burst waveforms.Comment: proceedings of GWDAW, 2003 conference, 13 pages, 6 figure
Optimal time-domain combination of the two calibrated output quadratures of GEO 600
GEO 600 is an interferometric gravitational wave detector with a 600 m arm-length and which uses a dual-recycled optical configuration to give enhanced sensitivity over certain frequencies in the detection band. Due to the dual-recycling, GEO 600 has two main output signals, both of which potentially contain gravitational wave signals. These two outputs are calibrated to strain using a time-domain method. In order to simplify the analysis of the GEO 600 data set, it is desirable to combine these two calibrated outputs to form a single strain signal that has optimal signal-to-noise ratio across the detection band. This paper describes a time-domain method for doing this combination. The method presented is similar to one developed for optimally combining the outputs of two colocated gravitational wave detectors. In the scheme presented in this paper, some simplifications are made to allow its implementation using time-domain methods
Isolation of gravitational waves from displacement noise and utility of a time-delay device
Interferometers with kilometer-scale arms have been built for
gravitational-wave detections on the ground; ones with much longer arms are
being planned for space-based detection. One fundamental motivation for long
baseline interferometry is from displacement noise. In general, the longer the
arm length L, the larger the motion the gravitational-wave induces on the test
masses, until L becomes comparable to the gravitational wavelength. Recently,
schemes have been invented, in which displacement noises can be evaded by
employing differences between the influence of test-mass motions and that of
gravitational waves on light propagation. However, in these schemes, such
differences only becomes significant when L approaches the gravitational
wavelength, and shot-noise limited sensitivity becomes worse than that of
conventional configurations by a factor of at least (f L/c)^(-2), for f<c/L.
Such a factor, although can be overcome theoretically by employing high optical
powers, makes these schemes quite impractical. In this paper, we explore the
use of time delay in displacement-noise-free interferometers, which can improve
their shot-noise-limited sensitivity at low frequencies, to a factor of (f
L/c)^(-1) of the shot-noise-limited sensitivity of conventional configurations.Comment: 10 pages, 12 figures, a proceeding for the Spanish Relativity Meeting
ERE 200
Spatial and temporal filtering of a 10-W Nd:YAG laser with a Fabry-Perot ring-cavity premode cleaner
We report on the use of a fixed-spacer Fabry–Perot ring cavity to filter spatially and temporally a 10-W laser-diode-pumped Nd:YAG master-oscillator power amplifier. The spatial filtering leads to a 7.6-W TEMinfinity beam with 0.1% higher-order transverse mode content. The temporal filtering reduces the relative power fluctuations at 10 MHz to 2.8 x 10^-/sqrtHz, which is 1 dB above the shot-noise limit for 50 mA of detected photocurrent
Performance of a 1200m long suspended Fabry-Perot cavity
Using one arm of the Michelson interferometer and the power recycling mirror
of the interferometric gravitational wave detector GEO600, we created a
Fabry-Perot cavity with a length of 1200 m. The main purpose of this experiment
was to gather first experience with the main optics, its suspensions and the
corresponding control systems. The residual displacement of a main mirror is
about 150 nm rms. By stabilising the length of the 1200 m long cavity to the
pre-stabilised laser beam we achieved an error point frequency noise of 0.1
mHz/sqrt(Hz) at 100 Hz Fourier frequency. In addition we demonstrated the
reliable performance of all included subsystems by several 10-hour-periods of
continuous stable operation. Thus the full frequency stabilisation scheme for
GEO600 was successfully tested.Comment: Amaldi 4 (Perth 2001) conference proceedings, 10 pages, 8 figure
A non-geodesic motion in the R^-1 theory of gravity tuned with observations
In the general picture of high order theories of gravity, recently, the R^-1
theory has been analyzed in two different frameworks. In this letter a third
context is added, considering an explicit coupling between the R^-1 function of
the Ricci scalar and the matter Lagrangian. The result is a non-geodesic motion
of test particles which, in principle, could be connected with Dark Matter and
Pioneer anomaly problems.Comment: Accepted for Modern Physics Letters
- …
