6,761 research outputs found

    The Absence of Cold Dust and the Mineralogy and Origin of the Warm Dust Encircling BD +20 307

    Full text link
    Spitzer Space Telescope photometry and spectroscopy of BD +20 307 show that all of the dust around this remarkable Gyr-old spectroscopic binary arises within 1 AU. No additional cold dust is needed to fit the infrared excess. Peaks in the 10 and 20 micron spectrum are well fit with small silicates that should be removed on a timescale of years from the system. This is the dustiest star known for its age, which is >1 Gyr. The dust cannot arise from a steady-state collisional cascade. A catastrophic collision of two rocky, planetary-scale bodies in the terrestrial zone is the most likely source for this warm dust because it does not require a reservoir of planetesimals in the outer system.Comment: accepted to ApJ; 3 color figure

    Magnetic properties of Quantum Corrals from first principles calculations

    Full text link
    We present calculations for electronic and magnetic properties of surface states confined by a circular quantum corral built of magnetic adatoms (Fe) on a Cu(111) surface. We show the oscillations of charge and magnetization densities within the corral and the possibility of the appearance of spin--polarized states. In order to classify the peaks in the calculated density of states with orbital quantum numbers we analyzed the problem in terms of a simple quantum mechanical circular well model. This model is also used to estimate the behaviour of the magnetization and energy with respect to the radius of the circular corral. The calculations are performed fully relativistically using the embedding technique within the Korringa-Kohn-Rostoker method.Comment: 14 pages, 9 figures, submitted to J. Phys. Cond. Matt. special issue on 'Theory and Simulation of Nanostructures

    Near Infrared Imaging of the Hubble Deep Field with The Keck Telescope

    Get PDF
    Two deep K-band (2.2μm2.2 \mu m) images, with point-source detection limits of K=25.2K=25.2 mag (one sigma), taken with the Keck Telescope in subfields of the Hubble Deep Field, are presented and analyzed. A sample of objects to K=24 mag is constructed and V606I814V_{606}-I_{814} and I814KI_{814}-K colors are measured. By stacking visually selected objects, mean I814KI_{814}-K colors can be measured to very faint levels; the mean I814KI_{814}-K color is constant with apparent magnitude down to V606=28V_{606}=28 mag.Comment: Replaced with slightly revised source positions and corrected V-I magnitudes (which were incorrect in the Tables and Figure 5). 18 pages. The data are publicly available at http://www.cco.caltech.edu/~btsoifer/hdf.html along with a high-resolution version of Fig.

    A pair of gigantic bipolar dust jets close to the solar system

    Full text link
    We report the discovery of two adjacent jet candidates with a length of about 9 degrees each -- 10 times longer than the largest known jets -- detected by us on 60 and 100 micron IRAS maps, but not observed at any other wavelength. They are extremely collimated (length-to-width ratios 20--50), curved, knotty, and end in prominent bubbles. Their dust temperatures are 25 K and 30 K, respectively. Both harbour faint stars, one having a high proper motion (0.23 arcsec/yr) and being very red, suggesting a distance of about 60 pc. At this distance, the total mass of both jet candidates is about about 1 solar mass. We suspect that these gigantic (9 pc length respectively) jets are of fossil type and have a common origin, due to the decay of a system of evolved stars. They are the first examples of jets radiating in the far IR and might, because of their closeness, be of interest for further studies of the acceleration and collimation processes of astrophysical jets.Comment: 4 pages, 4 figures in reduced quality, accepted by Astronomy & Astrophysics (Letter) february 10, 2004. See http://astro.uibk.ac.at/dustjets/ for the full resolution and color version of the image

    Non-collinear magnetic structures: a possible cause for current induced switching

    Full text link
    Current induced switching in Co/Cu/Co trilayers is described in terms of ab-initio determined magnetic twisting energies and corresponding sheet resistances. In viewing the twisting energy as an energy flux the characteristic time thereof is evaluated by means of the Landau-Lifshitz-Gilbert equation using ab-initio parameters. The obtained switching times are in very good agreement with available experimental data. In terms of the calculated currents, scalar quantities since a classical Ohm's law is applied, critical currents needed to switch magnetic configurations from parallel to antiparallel and vice versa can unambiguously be defined. It is found that the magnetoresistance viewed as a function of the current is essentially determined by the twisting energy as a function of the relative angle between the orientations of the magnetization in the magnetic slabs, which in turn can also explain in particular cases the fact that after having switched off the current the system remains in the switched magnetic configuration. For all ab-initio type calculations the fully relativistic Screened Korringa-Kohn-Rostoker method and the corresponding Kubo-Greenwood equation in the context of density functional theory are applied.Comment: 20 pages, 4 tables and 15 figures, submitted to PR
    corecore