5,348 research outputs found
Recommended from our members
Ontogenetic changes in cutaneous and branchial ionocytes and morphology in yellowfin tuna (Thunnus albacares) larvae.
The development of osmoregulatory and gas exchange organs was studied in larval yellowfin tuna (Thunnus albacares) from 2 to 25 days post-hatching (2.9-24.5 mm standard length, SL). Cutaneous and branchial ionocytes were identified using Na+/K+-ATPase immunostaining and scanning electron microscopy. Cutaneous ionocyte abundance significantly increased with SL, but a reduction in ionocyte size and density resulted in a significant decrease in relative ionocyte area. Cutaneous ionocytes in preflexion larvae had a wide apical opening with extended microvilli; however, microvilli retracted into an apical pit from flexion onward. Lamellae in the gill and pseudobranch were first detected ~ 3.3 mm SL. Ionocytes were always present on the gill arch, first appeared in the filaments and lamellae of the pseudobranch at 3.4 mm SL, and later in gill filaments at 4.2 mm SL, but were never observed in the gill lamellae. Unlike the cutaneous ionocytes, gill and pseudobranch ionocytes had a wide apical opening with extended microvilli throughout larval development. The interlamellar fusion, a specialized gill structure binding the lamellae of ram-ventilating fish, began forming by ~ 24.5 mm SL and contained ionocytes, a localization never before reported. Ionocytes were retained on the lamellar fusions and also found on the filament fusions of larger sub-adult yellowfin tuna; however, sub-adult gill ionocytes had apical pits. These results indicate a shift in gas exchange and NaCl secretion from the skin to branchial organs around the flexion stage, and reveal novel aspects of ionocyte localization and morphology in ram-ventilating fishes
Top, Bottom Quarks and Higgs Bosons
In this talk, I will discuss possible new physics effects that modify the
interaction of Higgs boson(s) with top and bottom quarks, and discuss how to
detect such effects in current and future high energy colliders.Comment: LaTeX, 16 pages including 5 figure
Localized low-frequency Neumann modes in 2d-systems with rough boundaries
We compute the relative localization volumes of the vibrational eigenmodes in
two-dimensional systems with a regular body but irregular boundaries under
Dirichlet and under Neumann boundary conditions. We find that localized states
are rare under Dirichlet boundary conditions but very common in the Neumann
case. In order to explain this difference, we utilize the fact that under
Neumann conditions the integral of the amplitudes, carried out over the whole
system area is zero. We discuss, how this condition leads to many localized
states in the low-frequency regime and show by numerical simulations, how the
number of the localized states and their localization volumes vary with the
boundary roughness.Comment: 7 pages, 4 figure
Bosonization for disordered and chaotic systems
Using a supersymmetry formalism, we reduce exactly the problem of electron
motion in an external potential to a new supermatrix model valid at all
distances. All approximate nonlinear sigma models obtained previously for
disordered systems can be derived from our exact model using a coarse-graining
procedure. As an example, we consider a model for a smooth disorder and
demonstrate that using our approach does not lead to a 'mode-locking' problem.
As a new application, we consider scattering on strong impurities for which the
Born approximation cannot be used. Our method provides a new calculational
scheme for disordered and chaotic systems.Comment: 4 pages, no figure, REVTeX4; title changed, revision for publicatio
Effect of a magnetic flux on the critical behavior of a system with long range hopping
We study the effect of a magnetic flux in a 1D disordered wire with long
range hopping.
It is shown that this model is at the metal-insulator transition (MIT) for
all disorder values and the spectral correlations are given by critical
statistics. In the weak disorder regime a smooth transition between orthogonal
and unitary symmetry is observed as the flux strength increases. By contrast,
in the strong disorder regime the spectral correlations are almost flux
independent. It is also conjectured that the two level correlation function for
arbitrary flux is given by the dynamical density-density correlations of the
Calogero-Sutherland (CS) model at finite temperature. Finally we describe the
classical dynamics of the model and its relevance to quantum chaos.Comment: 5 pages, 4 figure
Statistics of fluctuations for two types of crossover: from ballistic to diffusive regime and from orthogonal to unitary ensemble
In our previous publication [Kogan et al, Phys. Rev. {\bf 48}, 9404 (1993)]
we considered the issue of statistics of radiation diffusively propagating in a
disordered medium. The consideration was in the framework of diagrammatic
techniques and a new representation for the intensity distribution function in
terms of connected diagrams only was proposed. Here we use similar approach to
treat the issue of statistics in the regime of the crossover between ballistic
and diffusive transport. We find that even small contribution from coherent
component decreases by one half the intensity distribution function for small
values of intensity and also produces oscillations of the distribution
function. We also apply this method to study statistics of fluctuations of wave
functions of chaotic electrons in a quantum dot in an arbitrary magnetic field,
by calculating the single state local density in the regime of the crossover
between the orthogonal and unitary ensemble.Comment: Revtex, 3 pages + 2 ps.figures in uuencoded file, a version which
clarifies and unites the results of two previous submission
Cooperative localization-delocalization in the high Tc cuprates
The intrinsic metastable crystal structure of the cuprates results in local
dynamical lattice instabilities, strongly coupled to the density fluctuations
of the charge carriers. They acquire in this way simultaneously both,
delocalized and localized features. It is responsible for a partial fractioning
of the Fermi surface, i.e., the Fermi surface gets hidden in a region around
the anti-nodal points, because of the opening of a pseudogap in the normal
state, arising from a partial charge localization. The high energy localized
single-particle features are a result of a segregation of the homogeneous
crystal structure into checker-board local nano-size structures, which breaks
the local translational and rotational symmetry. The pairing in such a system
is dynamical rather than static, whereby charge carriers get momentarily
trapped into pairs in a deformable dynamically fluctuating ligand environment.
We conclude that the intrinsically heterogeneous structure of the cuprates must
play an important role in this type of superconductivity.Comment: 14 pages, 8 figures, Proceedings of the "International Conference on
Condensed Matter Theories", Quito, 2009 Int. J. Mod. Phys. B 2010 (Accepted
Universality of the critical conductance distribution in various dimensions
We study numerically the metal - insulator transition in the Anderson model
on various lattices with dimension (bifractals and Euclidian
lattices). The critical exponent and the critical conductance
distribution are calculated. We confirm that depends only on the {\it
spectral} dimension. The other parameters - critical disorder, critical
conductance distribution and conductance cummulants - depend also on lattice
topology. Thus only qualitative comparison with theoretical formulae for
dimension dependence of the cummulants is possible
The WARPS survey - IV: The X-ray luminosity-temperature relation of high redshift galaxy clusters
We present a measurement of the cluster X-ray luminosity-temperature relation
out to high redshift (z~0.8). Combined ROSAT PSPC spectra of 91 galaxy clusters
detected in the Wide Angle ROSAT Pointed Survey (WARPS) are simultaneously fit
in redshift and luminosity bins. The resulting temperature and luminosity
measurements of these bins, which occupy a region of the high redshift L-T
relation not previously sampled, are compared to existing measurements at low
redshift in order to constrain the evolution of the L-T relation. We find a
best fit to low redshift (z1 keV, to be L proportional
to T^(3.15\pm0.06). Our data are consistent with no evolution in the
normalisation of the L-T relation up to z~0.8. Combining our results with ASCA
measurements taken from the literature, we find eta=0.19\pm0.38 (for Omega_0=1,
with 1 sigma errors) where L_Bol is proportional to (1 + z)^eta T^3.15, or
eta=0.60\pm0.38 for Omega_0=0.3. This lack of evolution is considered in terms
of the entropy-driven evolution of clusters. Further implications for
cosmological constraints are also discussed.Comment: 11 pages, 7 figures, accepted for publication in MNRA
- …
