4,166 research outputs found
Gas Absorption Detected from the Edge-on Debris Disk Surrounding HD32297
Near-infrared and optical imaging of HD32297 indicate that it has an edge-on
debris disk, similar to beta Pic. I present high resolution optical spectra of
the NaI doublet toward HD32297 and stars in close angular proximity. A
circumstellar absorption component is clearly observed toward HD32297 at the
stellar radial velocity, which is not observed toward any of its neighbors,
including the nearest only 0.9 arcmin away. An interstellar component is
detected in all stars >90 pc, including HD32297, likely due to the interstellar
material at the boundary of the Local Bubble. Radial velocity measurements of
the nearest neighbors, BD+07 777s and BD+07 778, indicate that they are
unlikely to be physically associated with HD32297. The measured circumstellar
column density around HD32997, log N(NaI) ~ 11.4, is the strongest NaI
absorption measured toward any nearby main sequence debris disk, even the
prototypical edge-on debris disk, beta Pic. Assuming that the morphology and
abundances of the gas component around HD32297 are similar to beta Pic, I
estimate an upper limit to the gas mass in the circumstellar disk surrounding
HD32297 of ~0.3 M_Earth.Comment: 13 pages, 2 figures; Accepted for publication in ApJ Letter
Energy and width measurements of low-Z pionic X-ray transitions
High resolution spectrometric measurement of energy and natural line widths of 2p-1s pionic X ray transitions, as well as muonic transition energies in Li, Be, B, and C isotope
Planetary systems around close binary stars: the case of the very dusty, Sun-like, spectroscopic binary BD+20 307
Field star BD+20 307 is the dustiest known main sequence star, based on the
fraction of its bolometric luminosity, 4%, that is emitted at infrared
wavelengths. The particles that carry this large IR luminosity are unusually
warm, comparable to the temperature of the zodiacal dust in the solar system,
and their existence is likely to be a consequence of a fairly recent collision
of large objects such as planets or planetary embryos. Thus, the age of BD+20
307 is potentially of interest in constraining the era of terrestrial planet
formation. The present project was initiated with an attempt to derive this age
using the Chandra X-ray Observatory to measure the X-ray flux of BD+20 307 in
conjunction with extensive photometric and spectroscopic monitoring
observations from Fairborn Observatory. However, the recent realization that
BD+20 307 is a short period, double-line, spectroscopic binary whose components
have very different lithium abundances, vitiates standard methods of age
determination. We find the system to be metal-poor; this, combined with its
measured lithium abundances, indicates that BD+20 307 may be several to many
Gyr old. BD+20 307 affords astronomy a rare peek into a mature planetary system
in orbit around a close binary star (because such systems are not amenable to
study by the precision radial velocity technique).Comment: accepted for ApJ, December 10, 200
Hubble Space Telescope Observations of UV Oscillations in WZ Sagittae During the Decline from Outburst
We present a time series analysis of Hubble Space Telescope observations of
WZ Sge obtained in 2001 September, October, November and December as WZ Sge
declined from its 2001 July superoutburst. Previous analysis of these data
showed the temperature of the white dwarf decreased from ~29,000 K to ~18,000
K. In this study we binned the spectra over wavelength to yield ultraviolet
light curves at each epoch that were then analyzed for the presence of the
well-known 27.87 s and 28.96 s oscillations. We detect the 29 s periodicity at
all four epochs, but the 28 s periodicity is absent. The origin of these
oscillations has been debated since their discovery in the 1970s and competing
hypotheses are based on either white dwarf non-radial g-mode pulsations or
magnetically-channelled accretion onto a rotating white dwarf. By analogy with
the ZZ Ceti stars, we argue that the non-radial g-mode pulsation model demands
a strong dependence of pulse period on the white dwarf's temperature. However,
these observations show the 29 s oscillation is independent of the white
dwarf's temperature. Thus we reject the white dwarf non-radial g-mode pulsation
hypothesis as the sole origin of the oscillations. It remains unclear if
magnetically-funnelled accretion onto a rapidly rotating white dwarf (or belt
on the white dwarf) is responsible for producing the oscillations. We also
report the detection of a QPO with period ~18 s in the September light curve.
The amplitudes of the 29 s oscillation and the QPO vary erratically on short
timescales and are not correlated with the mean system brightness nor with each
other.Comment: 20 pages, 3 figures, 1 table; accepted for publication in Ap
A new measurement of the lifetime of the positive pion
Digital timing method for measuring positive pion lifetim
Some Exact Results on the Potts Model Partition Function in a Magnetic Field
We consider the Potts model in a magnetic field on an arbitrary graph .
Using a formula of F. Y. Wu for the partition function of this model as a
sum over spanning subgraphs of , we prove some properties of concerning
factorization, monotonicity, and zeros. A generalization of the Tutte
polynomial is presented that corresponds to this partition function. In this
context we formulate and discuss two weighted graph-coloring problems. We also
give a general structural result for for cyclic strip graphs.Comment: 5 pages, late
Identification of a nearby stellar association in the Hipparcos catalog: implications for recent, local star formation
The TW Hydrae Association (~55 pc from Earth) is the nearest known region of
recent star formation. Based primarily on the Hipparcos catalog, we have now
identified a group of 9 or 10 co-moving star systems at a common distance (~45
pc) from Earth that appear to comprise another, somewhat older, association
(``the Tucanae Association''). Together with ages and motions recently
determined for some nearby field stars, the existence of the Tucanae and TW
Hydrae Associations suggests that the Sun is now close to a region that was the
site of substantial star formation only 10-40 million years ago. The TW Hydrae
Association represents a final chapter in the local star formation history.Comment: 5 pages incl figs and table
Monomer-dimer model in two-dimensional rectangular lattices with fixed dimer density
The classical monomer-dimer model in two-dimensional lattices has been shown
to belong to the \emph{``#P-complete''} class, which indicates the problem is
computationally ``intractable''. We use exact computational method to
investigate the number of ways to arrange dimers on
two-dimensional rectangular lattice strips with fixed dimer density . For
any dimer density , we find a logarithmic correction term in the
finite-size correction of the free energy per lattice site. The coefficient of
the logarithmic correction term is exactly -1/2. This logarithmic correction
term is explained by the newly developed asymptotic theory of Pemantle and
Wilson. The sequence of the free energy of lattice strips with cylinder
boundary condition converges so fast that very accurate free energy
for large lattices can be obtained. For example, for a half-filled lattice,
, while and . For , is accurate at least to 10 decimal
digits. The function reaches the maximum value at , with 11 correct digits. This is also
the \md constant for two-dimensional rectangular lattices. The asymptotic
expressions of free energy near close packing are investigated for finite and
infinite lattice widths. For lattices with finite width, dependence on the
parity of the lattice width is found. For infinite lattices, the data support
the functional form obtained previously through series expansions.Comment: 15 pages, 5 figures, 5 table
Spanning Trees on Graphs and Lattices in d Dimensions
The problem of enumerating spanning trees on graphs and lattices is
considered. We obtain bounds on the number of spanning trees and
establish inequalities relating the numbers of spanning trees of different
graphs or lattices. A general formulation is presented for the enumeration of
spanning trees on lattices in dimensions, and is applied to the
hypercubic, body-centered cubic, face-centered cubic, and specific planar
lattices including the kagom\'e, diced, 4-8-8 (bathroom-tile), Union Jack, and
3-12-12 lattices. This leads to closed-form expressions for for these
lattices of finite sizes. We prove a theorem concerning the classes of graphs
and lattices with the property that
as the number of vertices , where is a finite
nonzero constant. This includes the bulk limit of lattices in any spatial
dimension, and also sections of lattices whose lengths in some dimensions go to
infinity while others are finite. We evaluate exactly for the
lattices we considered, and discuss the dependence of on d and the
lattice coordination number. We also establish a relation connecting to the free energy of the critical Ising model for planar lattices .Comment: 28 pages, latex, 1 postscript figure, J. Phys. A, in pres
- …
