15 research outputs found

    SARS-CoV-2 infection rates of antibody-positive compared with antibody-negative health-care workers in England: a large, multicentre, prospective cohort study (SIREN).

    Get PDF
    BACKGROUND: Increased understanding of whether individuals who have recovered from COVID-19 are protected from future SARS-CoV-2 infection is an urgent requirement. We aimed to investigate whether antibodies against SARS-CoV-2 were associated with a decreased risk of symptomatic and asymptomatic reinfection. METHODS: A large, multicentre, prospective cohort study was done, with participants recruited from publicly funded hospitals in all regions of England. All health-care workers, support staff, and administrative staff working at hospitals who could remain engaged in follow-up for 12 months were eligible to join The SARS-CoV-2 Immunity and Reinfection Evaluation study. Participants were excluded if they had no PCR tests after enrolment, enrolled after Dec 31, 2020, or had insufficient PCR and antibody data for cohort assignment. Participants attended regular SARS-CoV-2 PCR and antibody testing (every 2-4 weeks) and completed questionnaires every 2 weeks on symptoms and exposures. At enrolment, participants were assigned to either the positive cohort (antibody positive, or previous positive PCR or antibody test) or negative cohort (antibody negative, no previous positive PCR or antibody test). The primary outcome was a reinfection in the positive cohort or a primary infection in the negative cohort, determined by PCR tests. Potential reinfections were clinically reviewed and classified according to case definitions (confirmed, probable, or possible) and symptom-status, depending on the hierarchy of evidence. Primary infections in the negative cohort were defined as a first positive PCR test and seroconversions were excluded when not associated with a positive PCR test. A proportional hazards frailty model using a Poisson distribution was used to estimate incidence rate ratios (IRR) to compare infection rates in the two cohorts. FINDINGS: From June 18, 2020, to Dec 31, 2020, 30 625 participants were enrolled into the study. 51 participants withdrew from the study, 4913 were excluded, and 25 661 participants (with linked data on antibody and PCR testing) were included in the analysis. Data were extracted from all sources on Feb 5, 2021, and include data up to and including Jan 11, 2021. 155 infections were detected in the baseline positive cohort of 8278 participants, collectively contributing 2 047 113 person-days of follow-up. This compares with 1704 new PCR positive infections in the negative cohort of 17 383 participants, contributing 2 971 436 person-days of follow-up. The incidence density was 7·6 reinfections per 100 000 person-days in the positive cohort, compared with 57·3 primary infections per 100 000 person-days in the negative cohort, between June, 2020, and January, 2021. The adjusted IRR was 0·159 for all reinfections (95% CI 0·13-0·19) compared with PCR-confirmed primary infections. The median interval between primary infection and reinfection was more than 200 days. INTERPRETATION: A previous history of SARS-CoV-2 infection was associated with an 84% lower risk of infection, with median protective effect observed 7 months following primary infection. This time period is the minimum probable effect because seroconversions were not included. This study shows that previous infection with SARS-CoV-2 induces effective immunity to future infections in most individuals. FUNDING: Department of Health and Social Care of the UK Government, Public Health England, The National Institute for Health Research, with contributions from the Scottish, Welsh and Northern Irish governments

    High prevalence of SARS-CoV-2 antibodies in care homes affected by COVID-19: Prospective cohort study, England.

    Get PDF
    Background: We investigated six London care homes experiencing a COVID-19 outbreak and found high rates of SARS-CoV-2 infection among residents and staff. Here we report follow-up investigations including antibody testing in the same care homes five weeks later. Methods: Residents and staff in the initial investigation had a repeat nasal swab for SARS-CoV-2 RT-PCR and a blood test for SARS CoV-2 antibodies using ELISA based on SARS-CoV-2 native viral antigens derived from infected cells and virus neutralisation. Findings: Of the 518 residents and staff in the initial investigation, 186/241 (77.2%) surviving residents and 208/254 (81.9%) staff underwent serological testing. Almost all SARS-CoV-2 RT-PCR positive residents and staff were seropositive five weeks later, whether symptomatic (residents 35/35, 100%; staff, 22/22, 100%) or asymptomatic (residents 32/33, 97.0%; staff 21/22, 95.5%). Symptomatic but SARS-CoV-2 RT-PCR negative residents and staff also had high seropositivity rates (residents 23/27, 85.2%; staff 18/21, 85.7%), as did asymptomatic RT-PCR negative individuals (residents 61/91, 67.0%; staff 95/143, 66.4%). Neutralising antibody was detected in 118/132 (89.4%) seropositive individuals and was not associated with age or symptoms. Ten residents (10/79 re-tested, 12.7%) remained RT-PCR positive but with higher RT-PCR cycle threshold values; 7/10 had serological testing and all were seropositive. New infections were detected in three residents and one staff. Interpretation: RT-PCR provides a point prevalence of SARS-CoV-2 infection but significantly underestimates total exposure in outbreak settings. In care homes experiencing large COVID-19 outbreaks, most residents and staff had neutralising SARS-CoV-2 antibodies, which was not associated with age or symptoms. Funding: PHE

    Infectious diseases in allogeneic haematopoietic stem cell transplantation: prevention and prophylaxis strategy guidelines 2016

    Get PDF
    corecore