111 research outputs found

    A machine learning approach to predicting perceived partner support from relational and individual variables

    Get PDF
    Perceiving one’s partner as supportive is considered essential for relationships, but we know little about which factors are central to predicting perceived partner support. Traditional statistical techniques are ill-equipped to compare a large number of potential predictor variables and cannot answer this question. This research used machine learning analysis (random forest with Shapley values) to identify the most salient self-report predictors of perceived partner support cross-sectionally and 6 months later. We analyzed data from five dyadic data sets (N = 550 couples) enabling us to have greater confidence in the findings and ensure generalizability. Our novel results advance the literature by showing that relationship variables and attachment avoidance are central to perceived partner support, whereas partner similarity, other individual differences, individual well-being, and demographics explain little variance in perceiving partners as supportive. The findings are crucial in constraining and further developing our theories on perceived partner support

    The impact of non-harmonious goals on partner support and taking on opportunities

    Get PDF
    Romantic partners often support each other to progress toward goals. However, at times partners’ goals are not in harmony and conflict with partner or relationship needs, leading to negative consequences for couple members. The present study examined whether non-harmonious opportunities were associated with support provider’s and recipient’s behavior, perceived partner support, and goal outcomes. We further examined whether these effects were moderated by attachment styles. Findings from two experimental (n1= 296, n2= 117) and one dyadic daily diary (n3= 267) showed how having non-harmonious goals lead to problematic goal pursuit. Partners are less likely to behave positively toward the support provider, provide partner support, view their partners as supportive, and report less commitment to partners, and make less goal progress when goal non-harmony is present. Importantly, we did not find moderation effects of attachment styles for these processes. The findings highlight the importance of managing goal non-harmony in couples

    Successful negotiation of goal conflict between romantic partners predicts better goal outcomes during COVID-19: A mixed methods study

    Get PDF
    When romantic partners’ personal goals conflict, this can negatively affect personal goal outcomes, such as progress. In a concurrent mixed-methods study, we investigated whether goal conflict and negation of goal conflict were associated with goal outcomes (progress, confidence, motivation) and what strategies partners used during the COVID-19 pandemic to negotiate goal conflict. Survey participants (n = 200) completed a daily diary for a week and weekly longitudinal reports for a month and interview participants (n = 48) attended a semi-structured interview. Results showed that higher goal conflict was associated with lower goal outcomes, and successful negotiation of goal conflict was associated with better goal outcomes. Qualitative analyses identified three goal conflict negotiation strategies (compromise, integration, concession). Conversations focused on both practical and emotional needs and included respectful communication and space from conflict (timeout or avoidance). The mixed-methods results suggest that goal conflict was low during the pandemic and participants were often able to negotiate goal conflict resulting in better goal outcomes

    The first long-lived mutants: discovery of the insulin/IGF-1 pathway for ageing

    Get PDF
    Inhibiting insulin/IGF-1 signalling extends lifespan and delays age-related disease in species throughout the animal kingdom. This life-extension pathway, the first to be defined, was discovered through genetic studies in the small roundworm Caenorhabditis elegans. This discovery is described here

    Steroids as Central Regulators of Organismal Development and Lifespan

    Get PDF
    Larvae of the nematode Caenorhabditis elegans must choose between reproductive development and dauer diapause. This decision is based on sensing of environmental inputs and dauer pheromone, a small molecule signal that serves to monitor population density. These signals are integrated via conserved neuroendocrine pathways that converge on steroidal ligands of the nuclear receptor DAF-12, a homolog of the mammalian vitamin D receptor and liver X receptor. DAF-12 acts as the main switch between gene expression programs that drive either reproductive development or dauer entry. Extensive studies in the past two decades demonstrated that biosynthesis of two bile acid-like DAF-12 ligands, named dafachronic acids (DA), controls developmental fate. In this issue of PLoS Biology, Wollam et al. showed that a conserved steroid-modifying enzyme, DHS-16, introduces a key feature in the structures of the DAF-12 ligands, closing a major gap in the DA biosynthesis pathway. The emerging picture of DA biosynthesis in C. elegans enables us to address a key question in the field: how are complex environmental signals integrated to enforce binary, organism-wide decisions on developmental fate? Schaedel et al. demonstrated that pheromone and DA serve as competing signals, and that a positive feedback loop based on regulation of DA biosynthesis ensures organism-wide commitment to reproductive development. Considering that many components of DA signaling are highly conserved, ongoing studies in C. elegans may reveal new aspects of bile acid function and lifespan regulation in mammals

    Population Genetic Analysis of Propionibacterium acnes Identifies a Subpopulation and Epidemic Clones Associated with Acne

    Get PDF
    The involvement of Propionibacterium acnes in the pathogenesis of acne is controversial, mainly owing to its dominance as an inhabitant of healthy skin. This study tested the hypothesis that specific evolutionary lineages of the species are associated with acne while others are compatible with health. Phylogenetic reconstruction based on nine housekeeping genes was performed on 210 isolates of P. acnes from well-characterized patients with acne, various opportunistic infections, and from healthy carriers. Although evidence of recombination was observed, the results showed a basically clonal population structure correlated with allelic variation in the virulence genes tly and camp5, with pulsed field gel electrophoresis (PFGE)- and biotype, and with expressed putative virulence factors. An unexpected geographically and temporal widespread dissemination of some clones was demonstrated. The population comprised three major divisions, one of which, including an epidemic clone, was strongly associated with moderate to severe acne while others were associated with health and opportunistic infections. This dichotomy correlated with previously observed differences in in vitro inflammation-inducing properties. Comparison of five genomes representing acne- and health-associated clones revealed multiple both cluster- and strain-specific genes that suggest major differences in ecological preferences and redefines the spectrum of disease-associated virulence factors. The results of the study indicate that particular clones of P. acnes play an etiologic role in acne while others are associated with health

    Co-Regulation of the DAF-16 Target Gene, cyp-35B1/dod-13, by HSF-1 in C. elegans Dauer Larvae and daf-2 Insulin Pathway Mutants

    Get PDF
    Insulin/IGF-I-like signaling (IIS) has both cell autonomous and non-autonomous functions. In some cases, targets through which IIS regulates cell-autonomous functions, such as cell growth and metabolism, have been identified. In contrast, targets for many non-autonomous IIS functions, such as C. elegans dauer morphogenesis, remain elusive. Here, we report the use of genomic and genetic approaches to identify potential non-autonomous targets of C. elegans IIS. First, we used transcriptional microarrays to identify target genes regulated non-autonomously by IIS in the intestine or in neurons. C. elegans IIS controls expression of a number of stress response genes, which were differentially regulated by tissue-restricted IIS. In particular, expression of sod-3, a MnSOD enzyme, was not regulated by tissue-restricted IIS on the microarrays, while expression of hsp-16 genes was rescued back to wildtype by tissue restricted IIS. One IIS target regulated non-autonomously by age-1 was cyp-35B1/dod-13, encoding a cytochrome P450. Genetic analysis of the cyp-35B1 promoter showed both DAF-16 and HSF-1 are direct regulators. Based on these findings, we propose that hsf-1 may participate in the pathways mediating non-autonomous activities of age-1 in C. elegans

    Hyperactive Neuroendocrine Secretion Causes Size, Feeding, and Metabolic Defects of C. elegans Bardet-Biedl Syndrome Mutants

    Get PDF
    Bardet-Biedl syndrome, BBS, is a rare autosomal recessive disorder with clinical presentations including polydactyly, retinopathy, hyperphagia, obesity, short stature, cognitive impairment, and developmental delays. Disruptions of BBS proteins in a variety of organisms impair cilia formation and function and the multi-organ defects of BBS have been attributed to deficiencies in various cilia-associated signaling pathways. In C. elegans, bbs genes are expressed exclusively in the sixty ciliated sensory neurons of these animals and bbs mutants exhibit sensory defects as well as body size, feeding, and metabolic abnormalities. Here we show that in contrast to many other cilia-defective mutants, C. elegans bbs mutants exhibit increased release of dense-core vesicles and organism-wide phenotypes associated with enhanced activities of insulin, neuropeptide, and biogenic amine signaling pathways. We show that the altered body size, feeding, and metabolic abnormalities of bbs mutants can be corrected to wild-type levels by abrogating the enhanced secretion of dense-core vesicles without concomitant correction of ciliary defects. These findings expand the role of BBS proteins to the regulation of dense-core-vesicle exocytosis and suggest that some features of Bardet-Biedl Syndrome may be caused by excessive neuroendocrine secretion

    Downregulation of the Hsp90 System Causes Defects in Muscle Cells of Caenorhabditis Elegans

    Get PDF
    The ATP-dependent molecular chaperone Hsp90 is required for the activation of a variety of client proteins involved in various cellular processes. Despite the abundance of known client proteins, functions of Hsp90 in the organismal context are not fully explored. In Caenorhabditis elegans, Hsp90 (DAF-21) has been implicated in the regulation of the stress-resistant dauer state, in chemosensing and in gonad formation. In a C. elegans strain carrying a DAF-21 mutation with a lower ATP turnover, we observed motility defects. Similarly, a reduction of DAF-21 levels in wild type nematodes leads to reduced motility and induction of the muscular stress response. Furthermore, aggregates of the myosin MYO-3 are visible in muscle cells, if DAF-21 is depleted, implying a role of Hsp90 in the maintenance of muscle cell functionality. Similar defects can also be observed upon knockdown of the Hsp90-cochaperone UNC-45. In life nematodes YFP-DAF-21 localizes to the I-band and the M-line of the muscular ultrastructure, but the protein is not stably attached there. The Hsp90-cofactor UNC-45-CFP contrarily can be found in all bands of the nematode muscle ultrastructure and stably associates with the UNC-54 containing A-band. Thus, despite the physical interaction between DAF-21 and UNC-45, apparently the two proteins are not always localized to the same muscular structures. While UNC-45 can stably bind to myofilaments in the muscular ultrastructure, Hsp90 (DAF-21) appears to participate in the maintenance of muscle structures as a transiently associated diffusible factor
    corecore