114 research outputs found

    Simple model for low-frequency guitar function

    Get PDF

    Body mass index trajectories in early childhood in relation to cardiometabolic risk profile and body composition at 5 years of age

    Get PDF
    BACKGROUND: Both impaired and accelerated postnatal growth have been associated with adult risks of obesity and cardiometabolic diseases, like type 2 diabetes and cardiovascular disease. However, the timing of the onset of cardiometabolic changes and the specific growth trajectories linking early growth with later disease risks are not well understood. OBJECTIVES: The aim of this study was to identify distinct trajectories of BMI growth from 0 to 5 y and examine their associations with body composition and markers of cardiometabolic risk at age 5 y. METHODS: In a prospective birth cohort study of 453 healthy and term Ethiopian children with BMIs assessed a median of 9 times during follow-up, we identified subgroups of distinct BMI trajectories in early childhood using latent class trajectory modeling. Associations of the identified growth trajectories with cardiometabolic markers and body composition at 5 y were analyzed using multiple linear regression analyses in 4 adjustment models for each outcome. RESULTS: We identified 4 heterogeneous BMI growth trajectories: stable low BMI (19.2%), normal BMI (48.8%), rapid catch-up to high BMI (17.9%), and slow catch-up to high BMI (14.1%). Compared with the normal BMI trajectory, children in the rapid catch-up to high BMI trajectory had higher triglycerides (TGs) (range of β-coefficients in Models 1-4: 19-21%), C-peptides (23-25%), fat masses (0.48-0.60 kg), and fat-free masses (0.50-0.77 kg) across the 4 adjustment models. Children in the stable low BMI trajectory had lower LDL cholesterol concentrations (0.14-0.17 mmol/L), HDL cholesterol concentrations (0.05-0.09 mmol/L), fat masses (0.60-0.64 kg), and fat-free masses (0.35-0.49 kg), but higher TGs (11-13%). CONCLUSIONS: The development of obesity and cardiometabolic risks may be established already in early childhood; thus, our data provide a further basis for timely interventions targeted at young children from low-income countries with unfavorable growth patterns. The birth cohort was registered at ISRCTN as ISRCTN46718296

    Low birthweight is associated with a higher incidence of type 2 diabetes over two decades independent of adult BMI and genetic predisposition

    Get PDF
    Aims/hypothesis: Low birthweight is a risk factor for type 2 diabetes. Most previous studies are based on cross-sectional prevalence data, not designed to study the timing of onset of type 2 diabetes in relation to birthweight. We aimed to examine associations of birthweight with age-specific incidence rate of type 2 diabetes in middle-aged to older adults over two decades. Methods: Adults aged 30–60 years enrolled in the Danish Inter99 cohort in 1999–2001 (baseline examination), with information on birthweight from original birth records from 1939–1971 and without diabetes at baseline, were eligible. Birth records were linked with individual-level data on age at diabetes diagnosis and key covariates. Incidence rates of type 2 diabetes as a function of age, sex and birthweight were modelled using Poisson regression, adjusting for prematurity status at birth, parity, polygenic scores for birthweight and type 2 diabetes, maternal and paternal diabetes history, socioeconomic status and adult BMI. Results: In 4590 participants there were 492 incident type 2 diabetes cases during a mean follow-up of 19 years. Type 2 diabetes incidence rate increased with age, was higher in male participants, and decreased with increasing birthweight (incidence rate ratio [95% CI per 1 kg increase in birthweight] 0.60 [0.48, 0.75]). The inverse association of birthweight with type 2 diabetes incidence was statistically significant across all models and in sensitivity analysis. Conclusions/interpretation: A lower birthweight was associated with increased risk of developing type 2 diabetes independent of adult BMI and genetic risk of type 2 diabetes and birthweight

    Data on the use of dietary supplements in Danish patients with type 1 and type 2 diabetes

    Get PDF
    The data in this article describe the use of dietary supplements in Danish patients with type 1 diabetes (T1D) and type 2 diabetes (T2D). The data were collected from a web-based dietary survey on dietary habits in 774 patients with T1D (n = 426) and T2D (n = 348). The data demonstrate that 99% of the patients with diabetes use dietary supplements with no gender differences. In comparison, only 64% in the general population use dietary supplements [2].A higher proportion of people in the general population use multivitamin/mineral supplementation as compared to patients with diabetes (48% vs. 34–37%) and a higher proportion of women than men with diabetes use multivitamin/mineral supplementation (T1D: 43% women vs. 26% men and T2D: 45% women vs. 34% men). More patients with diabetes than the general population use supplements such as calcium together with vitamin D, vitamin D, vitamin B, vitamin C, vitamin E, magnesium, calcium, Q10, ginger, garlic, and other herbal supplements

    Associations of fat mass and fat-free mass accretion in infancy with body composition and cardiometabolic risk markers at 5 years: The Ethiopian iABC birth cohort study

    Get PDF
    BACKGROUND: Accelerated growth in early childhood is an established risk factor for later obesity and cardiometabolic disease, but the relative importance of fat mass (FM) and fat-free mass (FFM) accretion is not well understood. We aimed to study how FM and FFM at birth and their accretion during infancy were associated with body composition and cardiometabolic risk markers at 5 years. METHODS AND FINDINGS: Healthy children born at term were enrolled in the Infant Anthropometry and Body Composition (iABC) birth cohort between December 2008 and October 2012 at Jimma University Specialized Hospital in the city of Jimma, Ethiopia. FM and FFM were assessed using air displacement plethysmography a median of 6 times between birth and 6 months of age. In 507 children, we estimated individual FM and FFM at birth and their accretion over 0-3 and 3-6 months of age using linear-spline mixed-effects modelling. We analysed associations of FM and FFM at birth and their accretion in infancy with height, waist circumference, FM, FFM, and cardiometabolic risk markers at 5 years using multiple linear regression analysis. A total of 340 children were studied at the 5-year follow-up (mean age: 60.0 months; girls: 50.3%; mean wealth index: 45.5 out of 100; breastfeeding status at 4.5 to 6 months post-partum: 12.5% exclusive, 21.4% almost exclusive, 60.6% predominant, 5.5% partial/none). Higher FM accretion in infancy was associated with higher FM and waist circumference at 5 years. For instance, 100-g/month higher FM accretion in the periods 0-3 and 3-6 months was associated with 339 g (95% CI: 243-435 g, p < 0.001) and 367 g (95% CI: 250-484 g, p < 0.001) greater FM at 5 years, respectively. Higher FM at birth and FM accretion from 0 to 3 months were associated with higher FFM and cholesterol concentrations at 5 years. Associations for cholesterol were strongest for low-density lipoprotein (LDL)-cholesterol, and remained significant after adjusting for current FM. A 100-g higher FM at birth and 100-g/month higher FM accretion from 0 to 3 months were associated with 0.16 mmol/l (95% CI: 0.05-0.26 mmol/l, p = 0.005) and 0.06 mmol/l (95% CI: 0.01-0.12 mmol/l, p = 0.016) higher LDL-cholesterol at 5 years, respectively. Higher FFM at birth and FFM accretion in infancy were associated with higher FM, FFM, waist circumference, and height at 5 years. For instance, 100-g/month higher FFM accretion in the periods 0-3 and 3-6 months was associated with 1,002 g (95% CI: 815-1,189 g, p < 0.001) and 624 g (95% CI: 419-829 g, p < 0.001) greater FFM at 5 years, respectively. We found no associations of FM and FFM growth with any of the other studied cardiometabolic markers including glucose, HbA1c, insulin, C-peptide, HOMA-IR, triglycerides, and blood pressure. Non-attendance at the 5-year follow-up visit was the main limitation of this study, which may have introduced selection bias and limited the power of the regression analyses. CONCLUSIONS: FM accretion in early life was positively associated with markers of adiposity and lipid metabolism, but not with blood pressure and cardiometabolic markers related to glucose homeostasis. FFM accretion was primarily related to linear growth and FFM at 5 years
    corecore