28 research outputs found

    The Hilbertian Tensor Norm and Entangled Two-Prover Games

    Full text link
    We study tensor norms over Banach spaces and their relations to quantum information theory, in particular their connection with two-prover games. We consider a version of the Hilbertian tensor norm γ2\gamma_2 and its dual γ2∗\gamma_2^* that allow us to consider games with arbitrary output alphabet sizes. We establish direct-product theorems and prove a generalized Grothendieck inequality for these tensor norms. Furthermore, we investigate the connection between the Hilbertian tensor norm and the set of quantum probability distributions, and show two applications to quantum information theory: firstly, we give an alternative proof of the perfect parallel repetition theorem for entangled XOR games; and secondly, we prove a new upper bound on the ratio between the entangled and the classical value of two-prover games.Comment: 33 pages, some of the results have been obtained independently in arXiv:1007.3043v2, v2: an error in Theorem 4 has been corrected; Section 6 rewritten, v3: completely rewritten in order to improve readability; title changed; references added; published versio

    A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations

    Full text link
    We are interested in the problem of characterizing the correlations that arise when performing local measurements on separate quantum systems. In a previous work [Phys. Rev. Lett. 98, 010401 (2007)], we introduced an infinite hierarchy of conditions necessarily satisfied by any set of quantum correlations. Each of these conditions could be tested using semidefinite programming. We present here new results concerning this hierarchy. We prove in particular that it is complete, in the sense that any set of correlations satisfying every condition in the hierarchy has a quantum representation in terms of commuting measurements. Although our tests are conceived to rule out non-quantum correlations, and can in principle certify that a set of correlations is quantum only in the asymptotic limit where all tests are satisfied, we show that in some cases it is possible to conclude that a given set of correlations is quantum after performing only a finite number of tests. We provide a criterion to detect when such a situation arises, and we explain how to reconstruct the quantum states and measurement operators reproducing the given correlations. Finally, we present several applications of our approach. We use it in particular to bound the quantum violation of various Bell inequalities.Comment: 33 pages, 2 figure

    Preparation of High Surface-area Tungsten Carbide

    No full text

    Pr parations,propri t s de surface et activit catalytique du carbure de tungst(ne

    No full text
    SIGLEBSE B222929B / UCL - Université Catholique de LouvainBEBelgiu
    corecore