208 research outputs found
Dietary yeast influences ethanol sedation in Drosophila via serotonergic neuron function
Abuse of alcohol is a major clinical problem with far- reaching health consequences. Understanding the environmental and genetic factors that contribute to alcohol- related behaviors is a potential gateway for developing novel therapeutic approaches for patients that abuse the drug. To this end, we have used Drosophila melanogaster as a model to investigate the effect of diet, an environmental factor, on ethanol sedation. Providing flies with diets high in yeast, a routinely used component of fly media, increased their resistance to ethanol sedation. The yeast- induced resistance to ethanol sedation occurred in several different genetic backgrounds, was observed in males and females, was elicited by yeast from different sources, was readily reversible, and was associated with increased nutrient intake as well as decreased internal ethanol levels. Inhibition of serotonergic neuron function using multiple independent genetic manipulations blocked the effect of yeast supplementation on ethanol sedation, nutrient intake, and internal ethanol levels. Our results demonstrate that yeast is a critical dietary component that influences ethanol sedation in flies and that serotonergic signaling is required for the effect of dietary yeast on nutrient intake, ethanol uptake/elimination, and ethanol sedation. Our studies establish the fly as a model for diet- induced changes in ethanol sedation and raise the possibility that serotonin might mediate the effect of diet on alcohol- related behavior in other species.Flies fed a high yeast diet consume more nutrients, have decreased levels of internal ethanol when exposed to ethanol vapor and require longer exposure to ethanol to become sedated (ie, increased ST50). Our studies implicate serotonergic neurons as key regulators of nutrient consumption and therefore, the effect of dietary yeast on ethanol sedation in flies.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155987/1/adb12779.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155987/2/adb12779_am.pd
Synapsins Differentially Control Dopamine and Serotonin Release
Synapsins are a family of synaptic vesicle proteins that are important for neurotransmitter release. Here we have used triple knockout (TKO) mice lacking all three synapsin genes to determine the roles of synapsins in the release of two monoamine neurotransmitters, dopamine and serotonin. Serotonin release evoked by electrical stimulation was identical in substantia nigra pars reticulata slices prepared from TKO and wild-type mice. In contrast, release of dopamine in response to electrical stimulation was approximately doubled in striatum of TKO mice, both in vivo and in striatal slices, in comparison to wild-type controls. This was due to loss of synapsin III, because deletion of synapsin III alone was sufficient to increase dopamine release. Deletion of synapsins also increased the sensitivity of dopamine release to extracellular calcium ions. Although cocaine did not affect the release of serotonin from nigral tissue, this drug did enhance dopamine release. Cocaine-induced facilitation of dopamine release was a function of external calcium, an effect that was reduced in TKO mice. We conclude that synapsins play different roles in the control of release of dopamine and serotonin, with release of dopamine being negatively regulated by synapsins, specifically synapsin III, while serotonin release appears to be relatively independent of synapsins. These results provide further support for the concept that synapsin function in presynaptic terminals varies according to the neurotransmitter being released
Cocaine Increases Dopamine Release by Mobilization of a Synapsin-Dependent Reserve Pool
Cocaine primarily exerts its behavioral effects by enhancing dopaminergic neurotransmission, amplifying dopamine-encoded sensorimotor integration. The presumed mechanism for this effect is inhibition of the dopamine transporter, which blocks dopamine uptake and prolongs the duration of dopamine in the extracellular space. However, there is growing evidence that cocaine can also augment dopamine release. Here, we directly monitored the actions of cocaine on dopamine release by using electrochemical detection to measure extracellular dopamine in the striatum of anesthetized mice. Cocaine enhanced the levels of striatal dopamine produced by electrical stimulation of dopaminergic neurons. Even after pretreatment with alpha-methyl-p-tyrosine, which depletes the readily releasable pool of dopamine, cocaine was still capable of elevating dopamine levels. This suggests that cocaine enhances dopamine release by mobilizing a reserve pool of dopamine-containing synaptic vesicles. To test this hypothesis, we examined electrically evoked dopamine release in synapsin I/II/III triple knock-out mice, which have impaired synaptic vesicle reserve pools. Knock-out of synapsins greatly reduced the ability of cocaine to enhance dopamine release with long stimulus trains or after depletion of the newly synthesized pool. We therefore conclude that cocaine enhances dopamine release and does so by mobilizing a synapsin-dependent reserve pool of dopamine-containing synaptic vesicles. This capacity to enhance exocytotic release of dopamine may be important for the psychostimulant actions of cocaine
Vitamin D accelerates resolution of inflammatory responses during tuberculosis treatment
Calcidiol, the major circulating metabolite of vitamin D, supports induction of pleiotropic antimicrobial responses in vitro. Vitamin D supplementation elevates circulating calcidiol concentrations, and thus has a potential role in the prevention and treatment of infection. The immunomodulatory effects of administering vitamin D to humans with an infectious disease have not previously been reported. To characterize these effects, we conducted a detailed longitudinal study of circulating and antigen-stimulated immune responses in ninety-five patients receiving antimicrobial therapy for pulmonary tuberculosis who were randomized to receive adjunctive high-dose vitamin D or placebo in a clinical trial, and who fulfilled criteria for per-protocol analysis. Vitamin D supplementation accelerated sputum smear conversion and enhanced treatment-induced resolution of lymphopaenia, monocytosis, hypercytokinaemia, and hyperchemokinaemia. Administration of vitamin D also suppressed antigen-stimulated proinflammatory cytokine responses, but attenuated the suppressive effect of antimicrobial therapy on antigen-stimulated secretion of IL-4, CC chemokine ligand 5, and IFN-Ξ±. We demonstrate a previously unappreciated role for vitamin D supplementation in accelerating resolution of inflammatory responses during tuberculosis treatment. Our findings suggest a potential role for adjunctive vitamin D supplementation in the treatment of pulmonary infections to accelerate resolution of inflammatory responses associated with increased risk of mortality
Dopamine Modulates Persistent Synaptic Activity and Enhances the Signal-to-Noise Ratio in the Prefrontal Cortex
The importance of dopamine (DA) for prefrontal cortical (PFC) cognitive functions is widely recognized, but its mechanisms of action remain controversial. DA is thought to increase signal gain in active networks according to an inverted U dose-response curve, and these effects may depend on both tonic and phasic release of DA from midbrain ventral tegmental area (VTA) neurons.We used patch-clamp recordings in organotypic co-cultures of the PFC, hippocampus and VTA to study DA modulation of spontaneous network activity in the form of Up-states and signals in the form of synchronous EPSP trains. These cultures possessed a tonic DA level and stimulation of the VTA evoked DA transients within the PFC. The addition of high (β₯1 Β΅M) concentrations of exogenous DA to the cultures reduced Up-states and diminished excitatory synaptic inputs (EPSPs) evoked during the Down-state. Increasing endogenous DA via bath application of cocaine also reduced Up-states. Lower concentrations of exogenous DA (0.1 Β΅M) had no effect on the up-state itself, but they selectively increased the efficiency of a train of EPSPs to evoke spikes during the Up-state. When the background DA was eliminated by depleting DA with reserpine and alpha-methyl-p-tyrosine, or by preparing corticolimbic co-cultures without the VTA slice, Up-states could be enhanced by low concentrations (0.1β1 Β΅M) of DA that had no effect in the VTA containing cultures. Finally, in spite of the concentration-dependent effects on Up-states, exogenous DA at all but the lowest concentrations increased intracellular current-pulse evoked firing in all cultures underlining the complexity of DA's effects in an active network.Taken together, these data show concentration-dependent effects of DA on global PFC network activity and they demonstrate a mechanism through which optimal levels of DA can modulate signal gain to support cognitive functioning
Intravascular Food Reward
Consumption of calorie-containing sugars elicits appetitive behavioral responses and dopamine release in the ventral striatum, even in the absence of sweet-taste transduction machinery. However, it is unclear if such reward-related postingestive effects reflect preabsorptive or postabsorptive events. In support of the importance of postabsorptive glucose detection, we found that, in rat behavioral tests, high concentration glucose solutions administered in the jugular vein were sufficient to condition a side-bias. Additionally, a lower concentration glucose solution conditioned robust behavioral responses when administered in the hepatic-portal, but not the jugular vein. Furthermore, enteric administration of glucose at a concentration that is sufficient to elicit behavioral conditioning resulted in a glycemic profile similar to that observed after administration of the low concentration glucose solution in the hepatic-portal, but not jugular vein. Finally using fast-scan cyclic voltammetry we found that, in accordance with behavioral findings, a low concentration glucose solution caused an increase in spontaneous dopamine release events in the nucleus accumbens shell when administered in the hepatic-portal, but not the jugular vein. These findings demonstrate that the postabsorptive effects of glucose are sufficient for the postingestive behavioral and dopaminergic reward-related responses that result from sugar consumption. Furthermore, glycemia levels in the hepatic-portal venous system contribute more significantly for this effect than systemic glycemia, arguing for the participation of an intra-abdominal visceral sensor for glucose
Subcellular Location of PKA Controls Striatal Plasticity: Stochastic Simulations in Spiny Dendrites
Dopamine release in the striatum has been implicated in various forms of reward dependent learning. Dopamine leads to production of cAMP and activation of protein kinase A (PKA), which are involved in striatal synaptic plasticity and learning. PKA and its protein targets are not diffusely located throughout the neuron, but are confined to various subcellular compartments by anchoring molecules such as A-Kinase Anchoring Proteins (AKAPs). Experiments have shown that blocking the interaction of PKA with AKAPs disrupts its subcellular location and prevents LTP in the hippocampus and striatum; however, these experiments have not revealed whether the critical function of anchoring is to locate PKA near the cAMP that activates it or near its targets, such as AMPA receptors located in the post-synaptic density. We have developed a large scale stochastic reaction-diffusion model of signaling pathways in a medium spiny projection neuron dendrite with spines, based on published biochemical measurements, to investigate this question and to evaluate whether dopamine signaling exhibits spatial specificity post-synaptically. The model was stimulated with dopamine pulses mimicking those recorded in response to reward. Simulations show that PKA colocalization with adenylate cyclase, either in the spine head or in the dendrite, leads to greater phosphorylation of DARPP-32 Thr34 and AMPA receptor GluA1 Ser845 than when PKA is anchored away from adenylate cyclase. Simulations further demonstrate that though cAMP exhibits a strong spatial gradient, diffusible DARPP-32 facilitates the spread of PKA activity, suggesting that additional inactivation mechanisms are required to produce spatial specificity of PKA activity
Serotonin synthesis, release and reuptake in terminals: a mathematical model
<p>Abstract</p> <p>Background</p> <p>Serotonin is a neurotransmitter that has been linked to a wide variety of behaviors including feeding and body-weight regulation, social hierarchies, aggression and suicidality, obsessive compulsive disorder, alcoholism, anxiety, and affective disorders. Full understanding of serotonergic systems in the central nervous system involves genomics, neurochemistry, electrophysiology, and behavior. Though associations have been found between functions at these different levels, in most cases the causal mechanisms are unknown. The scientific issues are daunting but important for human health because of the use of selective serotonin reuptake inhibitors and other pharmacological agents to treat disorders in the serotonergic signaling system.</p> <p>Methods</p> <p>We construct a mathematical model of serotonin synthesis, release, and reuptake in a single serotonergic neuron terminal. The model includes the effects of autoreceptors, the transport of tryptophan into the terminal, and the metabolism of serotonin, as well as the dependence of release on the firing rate. The model is based on real physiology determined experimentally and is compared to experimental data.</p> <p>Results</p> <p>We compare the variations in serotonin and dopamine synthesis due to meals and find that dopamine synthesis is insensitive to the availability of tyrosine but serotonin synthesis is sensitive to the availability of tryptophan. We conduct <it>in silico </it>experiments on the clearance of extracellular serotonin, normally and in the presence of fluoxetine, and compare to experimental data. We study the effects of various polymorphisms in the genes for the serotonin transporter and for tryptophan hydroxylase on synthesis, release, and reuptake. We find that, because of the homeostatic feedback mechanisms of the autoreceptors, the polymorphisms have smaller effects than one expects. We compute the expected steady concentrations of serotonin transporter knockout mice and compare to experimental data. Finally, we study how the properties of the the serotonin transporter and the autoreceptors give rise to the time courses of extracellular serotonin in various projection regions after a dose of fluoxetine.</p> <p>Conclusions</p> <p>Serotonergic systems must respond robustly to important biological signals, while at the same time maintaining homeostasis in the face of normal biological fluctuations in inputs, expression levels, and firing rates. This is accomplished through the cooperative effect of many different homeostatic mechanisms including special properties of the serotonin transporters and the serotonin autoreceptors. Many difficult questions remain in order to fully understand how serotonin biochemistry affects serotonin electrophysiology and vice versa, and how both are changed in the presence of selective serotonin reuptake inhibitors. Mathematical models are useful tools for investigating some of these questions.</p
Dopamine Receptor Activation Increases HIV Entry into Primary Human Macrophages
Macrophages are the primary cell type infected with HIV in the central nervous system, and infection of these cells is a major component in the development of neuropathogenesis and HIV-associated neurocognitive disorders. Within the brains of drug abusers, macrophages are exposed to increased levels of dopamine, a neurotransmitter that mediates the addictive and reinforcing effects of drugs of abuse such as cocaine and methamphetamine. In this study we examined the effects of dopamine on HIV entry into primary human macrophages. Exposure to dopamine during infection increased the entry of R5 tropic HIV into macrophages, irrespective of the concentration of the viral inoculum. The entry pathway affected was CCR5 dependent, as antagonizing CCR5 with the small molecule inhibitor TAK779 completely blocked entry. The effect was dose-dependent and had a steep threshold, only occurring above 108 M dopamine. The dopamine-mediated increase in entry required dopamine receptor activation, as it was abrogated by the pan-dopamine receptor antagonist flupenthixol, and could be mediated through both subtypes of dopamine receptors. These findings indicate that the effects of dopamine on macrophages may have a significant impact on HIV pathogenesis. They also suggest that drug-induced increases in CNS dopamine may be a common mechanism by which drugs of abuse with distinct modes of action exacerbate neuroinflammation and contribute to HIV-associated neurocognitive disorders in infected drug abusers
- β¦