87 research outputs found

    Arthropod communities in fungal fruitbodies are weakly structured by climate and biogeography across European beech forests

    Get PDF
    Aim The tinder fungus Fomes fomentarius is a pivotal wood decomposer in European beech Fagus sylvatica forests. The fungus, however, has regionally declined due to centuries of logging. To unravel biogeographical drivers of arthropod communities associated with this fungus, we investigated how space, climate and habitat amount structure alpha and beta diversity of arthropod communities in fruitbodies of F. fomentarius. Location Temperate zone of Europe. Taxon Arthropods. Methods We reared arthropods from fruitbodies sampled from 61 sites throughout the range of European beech and identified 13 orders taxonomically or by metabarcoding. We estimated the total number of species occurring in fruitbodies of F. fomentarius in European beech forests using the Chao2 estimator and determined the relative importance of space, climate and habitat amount by hierarchical partitioning for alpha diversity and generalized dissimilarity models for beta diversity. A subset of fungi samples was sequenced for identification of the fungus’ genetic structure. Results The total number of arthropod species occurring in fruitbodies of F. fomentarius across European beech forests was estimated to be 600. Alpha diversity increased with increasing fruitbody biomass; it decreased with increasing longitude, temperature and latitude. Beta diversity was mainly composed by turnover. Patterns of beta diversity were only weakly linked to space and the overall explanatory power was low. We could distinguish two genotypes of F. fomentarius, which showed no spatial structuring. Main conclusion Fomes fomentarius hosts a large number of arthropods in European beech forests. The low biogeographical and climatic structure of the communities suggests that fruitbodies represent a habitat that offers similar conditions across large gradients of climate and space, but are characterized by high local variability in community composition and colonized by species with high dispersal ability. For European beech forests, retention of trees with F. fomentarius and promoting its recolonization where it had declined seems a promising conservation strategy

    Where are we now with European forest multi-taxon biodiversity and where can we head to?

    Get PDF
    The European biodiversity and forest strategies rely on forest sustainable management (SFM) to conserve forest biodiversity. However, current sustainability assessments hardly account for direct biodiversity indicators. We focused on forest multi-taxon biodiversity to: i) gather and map the existing information; ii) identify knowledge and research gaps; iii) discuss its research potential. We established a research network to fit data on species, standing trees, lying deadwood and sampling unit description from 34 local datasets across 3591 sampling units. A total of 8724 species were represented, with the share of common and rare species varying across taxonomic classes: some included many species with several rare ones (e.g., Insecta); others (e.g., Bryopsida) were represented by few common species. Tree-related structural attributes were sampled in a subset of sampling units (2889; 2356; 2309 and 1388 respectively for diameter, height, deadwood and microhabitats). Overall, multi-taxon studies are biased towards mature forests and may underrepresent the species related to other developmental phases. European forest compositional categories were all represented, but beech forests were over-represented as compared to thermophilous and boreal forests. Most sampling units (94%) were referred to a habitat type of conservation concern. Existing information may support European conservation and SFM strategies in: (i) methodological harmonization and coordinated monitoring; (ii) definition and testing of SFM indicators and thresholds; (iii) data-driven assessment of the effects of environmental and management drivers on multi-taxon forest biological and functional diversity, (iv) multi-scale forest monitoring integrating in-situ and remotely sensed information

    Medical physics principles of radiosurgery.

    No full text
    Beside basic physical notions such as ionizing radiation, beam production and beam characteristics, this chapter will focus on two major principles that should always be considered in a radiosurgery procedure: conformity and selectivity. Those parameters are influenced by different physical beam properties, by the type of beam delivery device and by the way the dose is delivered. Conformity and selectivity should be evaluated for each treatment with the help of some specific indices, i.e. target volume ratio and normal volume ratio based on the dose-volume histograms

    500 years of coppice-with-standards management in Meerdaal Forest (Central Belgium)

    No full text
    For centuries, coppice and coppice-with-standards were the main forest management systems in the northern and central parts of present Belgium. A high population density and a low forest cover in the whole region resulted in a high demand for wood, therefore strict regulations and management regimes were necessary to prevent overexploitation. We illustrate this with a well-documented case, that of Meerdaal Forest in Central Belgium, with reference to other sites in the region. Meerdaal Forest is a woodland 30 km east of Brussels. For centuries its high quality timber stands, especially oak, were managed as coppice-with-standards, with a gradually increasing share of standard trees. Using archive documents and ancient maps, we have reconstructed how this coppice-with-standard management has been developed and optimized over a period of about 500 years. Changes in cutting cycles and configurations were discerned, with a gradual increase of the importance of the standard layer over time. The analysis also showed how wood production could be successfully combined with other sources of income like grazing and pannage. We conclude that former managers of Meerdaal Forest, notwithstanding their lack of scholarship and reference works, developed a state-of-the-art sustainable and flexible management regime that allowed to provide high revenues during many centuries

    The temporal dynamics of temporary pond macroinvertebrate communities over a 10-year period

    Get PDF
    Ponds support a rich biodiversity. This arises in part because of the number and heterogeneity of ponds spatially throughout the landscape. Studies of ponds suggest that distinct communities develop within individual ponds but most examples are based on shortterm 1- or 2-year surveys which cannot identify the effects of historic events upon contemporary communities. This study reports the development and turnover of the early summer macroinvertebrate communities in thirty small temporary ponds fromtheir creation in 1994 over 10 years to 2004. Distinct pioneer communities established in the first year of the ponds’ creation, the first 3 years dominated by a fauna associated with long summer dry phases. Then a sustained period of inundation lasting 27 months from summer 1997–1999 resulted in establishment of many taxa associated with permanent ponds and loss of some temporary pond species. The re-establishment of summer dry phases in 1999 was associated with the loss of some but not all of the permanent water taxa and re-colonisation by some temporary water species creating new communities combining these different elements. The communities were not a linear successional sequence; the communities that re-assembled following resumption of dry phases reflected the contingent history of each pond and the effects of historic events. The longer term nature of the study showed that the characteristic heterogeneity of pond invertebrate communities occurs through time as well as spatially and that the richness and variety of contemporary communities, which is often hard to explain fromsnap-shot studies, is partly the result of historic events
    corecore