1,259 research outputs found

    Advocacy in the tail: Exploring the implications of ‘climategate’ for science journalism and public debate in the digital age

    Get PDF
    This paper explores the evolving practices of science journalism and public debate in the digital age. The vehicle for this study is the release of digitally stored email correspondence, data and documents from the Climatic Research Unit at the University of East Anglia in the weeks immediately prior to the United Nations Copenhagen Summit (COP-15) in December 2009. Described using the journalistic shorthand of ‘climategate’, and initially promoted through socio-technical networks of bloggers, this episode became a global news story and the subject of several formal reviews. ‘Climategate’ illustrates that media literate critics of anthropogenic explanations of climate change used digital tools to support their cause, making visible selected, newsworthy aspects of scientific information and the practices of scientists. In conclusion, I argue that ‘climategate’ may have profound implications for the production and distribution of science news, and how climate science is represented and debated in the digitally-mediated public sphere

    Towards an analytical framework of science communication models

    Get PDF
    This chapter reviews the discussion in science communication circles of models for public communication of science and technology (PCST). It questions the claim that there has been a large-scale shift from a ‘deficit model’ of communication to a ‘dialogue model’, and it demonstrates the survival of the deficit model along with the ambiguities of that model. Similar discussions in related fields of communication, including the critique of dialogue, are briefly sketched. Outlining the complex circumstances governing approaches to PCST, the author argues that communications models often perceived to be opposed can, in fact, coexist when the choices are made explicit. To aid this process, the author proposes an analytical framework of communication models based on deficit, dialogue and participation, including variations on each

    Department of Radiation Oncology and Kimmel Cancer Center, Thomas jefferson University, The intronic G13964C variant in p53 is not a high-risk mutation in familial breast cancer in Australia.

    Get PDF
    BACKGROUND: Mutations in BRCA1 and BRCA2 account for approximately 50% of breast cancer families with more than four affected cases, whereas exonic mutations in p53, PTEN, CHK2 and ATM may account for a very small proportion. It was recently reported that an intronic variant of p53--G13964C--occurred in three out of 42 (7.1%) \u27hereditary\u27 breast cancer patients, but not in any of 171 \u27sporadic\u27 breast cancer control individuals (P = 0.0003). If this relatively frequent occurrence of G13964C in familial breast cancer and absence in control individuals were confirmed, then this would suggest that the G13964C variant plays a role in breast cancer susceptibility. METHOD: We genotyped 71 familial breast cancer patients and 143 control individuals for the G13964C variant using polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) analysis. RESULTS: Three (4.2%; 95% confidence interval [CI] 0-8.9%) G13964C heterozygotes were identified. The variant was also identified in 5 out of 143 (3.5%; 95% CI 0.6-6.4%) control individuals without breast cancer or a family history of breast cancer, however, which is no different to the proportion found in familial cases (P = 0.9). CONCLUSION: The present study would have had 80% power to detect an odds ratio of 4.4, and we therefore conclude that the G13946C polymorphism is not a \u27high-risk\u27 mutation for familial breast cancer

    No evidence for association of ataxia-telangiectasia mutated gene T2119C and C3161G amino acid substitution variants with risk of breast cancer

    Get PDF
    BACKGROUND: There is evidence that certain mutations in the double-strand break repair pathway ataxia-telangiectasia mutated gene act in a dominant-negative manner to increase the risk of breast cancer. There are also some reports to suggest that the amino acid substitution variants T2119C Ser707Pro and C3161G Pro1054Arg may be associated with breast cancer risk. We investigate the breast cancer risk associated with these two nonconservative amino acid substitution variants using a large Australian population-based case–control study. METHODS: The polymorphisms were genotyped in more than 1300 cases and 600 controls using 5' exonuclease assays. Case–control analyses and genotype distributions were compared by logistic regression. RESULTS: The 2119C variant was rare, occurring at frequencies of 1.4 and 1.3% in cases and controls, respectively (P = 0.8). There was no difference in genotype distribution between cases and controls (P = 0.8), and the TC genotype was not associated with increased risk of breast cancer (adjusted odds ratio = 1.08, 95% confidence interval = 0.59–1.97, P = 0.8). Similarly, the 3161G variant was no more common in cases than in controls (2.9% versus 2.2%, P = 0.2), there was no difference in genotype distribution between cases and controls (P = 0.1), and the CG genotype was not associated with an increased risk of breast cancer (adjusted odds ratio = 1.30, 95% confidence interval = 0.85–1.98, P = 0.2). This lack of evidence for an association persisted within groups defined by the family history of breast cancer or by age. CONCLUSION: The 2119C and 3161G amino acid substitution variants are not associated with moderate or high risks of breast cancer in Australian women

    Mutation analysis of FANCD2, BRIP1/BACH1, LMO4 and SFN in familial breast cancer

    Get PDF
    INTRODUCTION: Mutations in known predisposition genes account for only about a third of all multiple-case breast cancer families. We hypothesized that germline mutations in FANCD2, BRIP1/BACH1, LMO4 and SFN may account for some of the unexplained multiple-case breast cancer families. METHODS: The families used in this study were ascertained through the Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer (kConFab). Denaturing high performance liquid chromatography (DHPLC) analysis of the coding regions of these four genes was conducted in the youngest affected cases of 30 to 267 non-BRCA1/2 breast cancer families. In addition, a further 399 index cases were also screened for mutations in two functionally significant regions of the FANCD2 gene and 253 index cases were screened for two previously reported mutations in BACH1 (p. P47A and p. M299I). RESULTS: DHPLC analysis of FANCD2 identified six silent exonic variants, and a large number of intronic variants, which tagged two common haplotypes. One protein truncating variant was found in BRIP1/BACH1, as well as four missense variants, a silent change and a variant in the 3' untranslated region. No missense or splice site mutations were found in LMO4 or SFN. Analysis of the missense, silent and frameshift variants of FANCD2 and BACH1 in relatives of the index cases, and in a panel of controls, found no evidence suggestive of pathogenicity. CONCLUSION: There is no evidence that highly penetrant exonic or splice site mutations in FANCD2, BRIP1/BACH1, LMO4 or SFN contribute to familial breast cancer. Large scale association studies will be necessary to determine whether any of the polymorphisms or haplotypes identified in these genes contributes to breast cancer risk
    • 

    corecore