805 research outputs found

    ADAR enzyme and miRNA story: A nucleotide that can make the difference

    Get PDF
    Adenosine deaminase acting on RNA (ADAR) enzymes convert adenosine (A) to inosine (I) in double-stranded (ds) RNAs. Since Inosine is read as Guanosine, the biological consequence of ADAR enzyme activity is an A/G conversion within RNA molecules. A-to-I editing events can occur on both coding and non-coding RNAs, including microRNAs (miRNAs), which are small regulatory RNAs of ~20-23 nucleotides that regulate several cell processes by annealing to target mRNAs and inhibiting their translation. Both miRNA precursors and mature miRNAs undergo A-to-I RNA editing, affecting the miRNA maturation process and activity. ADARs can also edit 3' UTR of mRNAs, further increasing the interplay between mRNA targets and miRNAs. In this review, we provide a general overview of the ADAR enzymes and their mechanisms of action as well as miRNA processing and function. We then review the more recent findings about the impact of ADAR-mediated activity on the miRNA pathway in terms of biogenesis, target recognition, and gene expression regulation

    Progressive damage in stitched composites: Static tensile tests and tension-tension fatigue

    Get PDF
    The paper describes progressive damage in static tensile tests and tension-tension fatigue in structurally stitched carbon/epoxy NCF composites, in comparison with their non-stitched counterparts. Analogies between damage development in quasi-static tension and tension-tension fatigue are analyzed and links between the damage initiation thresholds in quasi-static tests and fatigue life are established

    Surface-sensitive NMR in optically pumped semiconductors

    Full text link
    We present a scheme of surface-sensitive nuclear magnetic resonance in optically pumped semiconductors, where an NMR signal from a part of the surface of a bulk compound semiconductor is detected apart from the bulk signal. It utilizes optically oriented nuclei with a long spin-lattice relaxation time as a polarization reservoir for the second (target) nuclei to be detected. It provides a basis for the nuclear spin polarizer [IEEE Trans. Appl. Supercond. 14, 1635 (2004)], which is a polarization reservoir at a surface of the optically pumped semiconductor that polarizes nuclear spins in a target material in contact through the nanostructured interfaces.Comment: 4 pages, 5 figure

    Transition energy and lifetime for the ground state hyperfine splitting of high Z lithiumlike ions

    Get PDF
    The ground state hyperfine splitting values and the transition probabilities between the hyperfine structure components of high Z lithiumlike ions are calculated in the range Z=4983Z=49-83. The relativistic, nuclear, QED and interelectronic interaction corrections are taken into account. It is found that the Bohr-Weisskopf effect can be eliminated in a combination of the hyperfine splitting values of the hydrogenlike and lithiumlike ions of an isotope. This gives a possibility for testing the QED effects in a combination of the strong electric and magnetic fields of the heavy nucleus. Using the experimental result for the 1s1s hyperfine splitting in ^{209}Bi^{82+}, the 2s hyperfine splitting in ^{209}Bi^{80+} is calculated to be \Delta E=0.7969(2) eV.Comment: The nuclear charge distribution correction \delta is corrected, 14 pages, Late

    Intercultural sensitivity in the integrating suburb of Westville. Durban, South Africa.

    Get PDF
    To investigate intercultural sensitivity, the Davis Russell-Peters Intercultural Sensitivity Instrument (1994) was administered to 203 participants situated within residences in the formerly white suburb of Westville Durban, South Africa. The subjective experience of the participants was evaluated by comparing demographic variables with a suggested continuum of six stages between ethnocentrism and ethnorelativism. Respondents appeared to traverse the polarities related to their perceptions of reality and its subjective meaning. The preference for ethnocentric attitudes appeared to be a construct employed as a result of categorization and separation caused by former restrictive legislation of Apartheid. and strong cultural and religious anchors. It appears that groups gravitate towards their own cultural group because of the security it offers in times of political unrest and fear. Also, groups appeared to maintain healthy self-concepts and a preference for ethnorelativism, creating a world that values difference and is open to integration with the larger society

    Reciprocal regulation of metabolic and signaling pathways

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>By studying genome-wide expression patterns in healthy and diseased tissues across a wide range of pathophysiological conditions, DNA microarrays have revealed unique insights into complex diseases. However, the high-dimensionality of microarray data makes interpretation of heterogeneous gene expression studies inherently difficult.</p> <p>Results</p> <p>Using a large-scale analysis of more than 40 microarray studies encompassing ~2400 mammalian tissue samples, we identified a common theme across heterogeneous microarray studies evident by a robust genome-wide inverse regulation of metabolic and cell signaling pathways: We found that upregulation of cell signaling pathways was invariably accompanied by downregulation of cell metabolic transcriptional activity (and vice versa). Several findings suggest that this characteristic gene expression pattern represents a new principle of mammalian transcriptional regulation. First, this coordinated transcriptional pattern occurred in a wide variety of physiological and pathophysiological conditions and was identified across all 20 human and animal tissue types examined. Second, the differences in metabolic gene expression predicted the magnitude of differences for signaling and all other pathways, i.e. tissue samples with similar expression levels of metabolic transcripts did not show any differences in gene expression for all other pathways. Third, this transcriptional pattern predicted a profound effect on the proteome, evident by differences in structure, stability and post-translational modifications of proteins belonging to signaling and metabolic pathways, respectively.</p> <p>Conclusions</p> <p>Our data suggest that in a wide range of physiological and pathophysiological conditions, gene expression changes exhibit a recurring pattern along a transcriptional axis, characterized by an inverse regulation of major metabolic and cell signaling pathways. Given its widespread occurrence and its predicted effects on protein structure, protein stability and post-translational modifications, we propose a new principle for transcriptional regulation in mammalian biology.</p

    Lindblad master equation approach to superconductivity in open quantum systems

    Get PDF
    We consider an open quantum Fermi-system which consists of a single degenerate level with pairing interactions embedded into a superconducting bath. The time evolution of the reduced density matrix for the system is given by Linblad master equation, where the dissipators describe exchange of Bogoliubov quasiparticles with the bath. We obtain fixed points of the time evolution equation for the covariance matrix and study their stability by analyzing full dynamics of the order parameter.Comment: 7 pages, 2 pdf figure
    corecore