8 research outputs found
On inhomogeneous exterior Robin problems with critical nonlinearities
The paper studies the large-time behavior of solutions to the Robin problem
for PDEs with critical nonlinearities. For the considered problems,
nonexistence results are obtained, which complements the interesting recent
results by Ikeda et al. [J. Differential Equations, 269 (2020), no. 1,
563-594], where critical cases were left open. Moreover, our results provide
partially answers to some other open questions previously posed by Zhang [Proc.
Roy. Soc. Edinburgh Sect. A, 131 (2001), no. 2, 451-475] and Jleli-Samet
[Nonlinear Anal., 178 (2019), 348-365].Comment: 16 page
Instantaneous blow up solutions for nonlinear Sobolev type equations on the Heisenberg Group
In this paper, we study the nonlinear Sobolev type equations on the
Heisenberg group. We show that the problems do not admit nontrivial local weak
solutions, i.e. "instantaneous blow up" occurs, using the nonlinear capacity
method. Namely, by choosing suitable test functions, we will prove an
instantaneous blow up for any initial conditions with .Comment: 14 page
Bitsadze-Samarskii type problem for the integro-differential diffusion-wave equation on the Heisenberg group
This paper deals with the fractional generalization of the integro-differential diffusion-wave equation for the Heisenberg sub-Laplacian, with homogeneous Bitsadze-Samarskii type time-nonlocal conditions. For the considered problem, we show the existence, uniqueness and the explicit representation formulae for the solution
On a Nonlinear Problem of the Breaking Water Waves
The paper is devoted to the initial boundary value problem for the Korteweg-de Vries– Benjamin–Bona–Mahony equation in a finite domain. This particular problem arises from the phenomenon of long wave with small amplitude in fluid. For certain initial-boundary problems for the Korteweg-de Vries–Benjamin–Bona–Mahony equation, we obtain the conditions of blowing-up of global and travelling wave solutions in finite time. The proof of the results is based on the nonlinear capacity method. In closing, we provide the exact and numerical examples.Настоящая работа посвящена начальной краевой задаче для уравнения Кортевега-де Фриза - Бенджамина - Бона - Махони в конечной области. Эта задача возникает из-за явления длинной волны с малой амплитудой в жидкости. Для некоторых начально-краевых задач для уравнения Кортевега-де Фриза - Бенджамина - Бона - Махони мы получили условия разрушения глобальных решений и решений типа бегущей волны за конечное время. Доказательство результатов основано на методе нелинейной емкости. В заключение мы приводим точные и численные примеры
Qualitative properties of solutions to the nonlinear time-space fractional diffusion equation
In the present paper, we study the Cauchy-Dirichlet problem to the nonlocal
nonlinear diffusion equation with polynomial nonlinearities
involving time-fractional Caputo derivative and
space-fractional -Laplacian operator . We give a simple proof
of the comparison principle for the considered problem using purely algebraic
relations, for different sets of and . The Galerkin
approximation method is used to prove the existence of a local weak solution.
The blow-up phenomena, existence of global weak solutions and asymptotic
behavior of global solutions are classified using the comparison principle.Comment: 33 page
P A SOME PROBLEMS FOR FRACTIONAL ANALOGUE OF LAPLACE EQUATION
Abstract: In this paper we study some boundary value problems for fractional analogue of Laplace equation in a rectangular. Theorems about existence and uniqueness of a solution of the considered problems are proved by spectral method