8 research outputs found

    On inhomogeneous exterior Robin problems with critical nonlinearities

    Full text link
    The paper studies the large-time behavior of solutions to the Robin problem for PDEs with critical nonlinearities. For the considered problems, nonexistence results are obtained, which complements the interesting recent results by Ikeda et al. [J. Differential Equations, 269 (2020), no. 1, 563-594], where critical cases were left open. Moreover, our results provide partially answers to some other open questions previously posed by Zhang [Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), no. 2, 451-475] and Jleli-Samet [Nonlinear Anal., 178 (2019), 348-365].Comment: 16 page

    Instantaneous blow up solutions for nonlinear Sobolev type equations on the Heisenberg Group

    Full text link
    In this paper, we study the nonlinear Sobolev type equations on the Heisenberg group. We show that the problems do not admit nontrivial local weak solutions, i.e. "instantaneous blow up" occurs, using the nonlinear capacity method. Namely, by choosing suitable test functions, we will prove an instantaneous blow up for any initial conditions u0,u1Lq(Hn)u_0,\,u_1\in L^q(\mathbb{H}^n) with qQQ2q\leq \frac{Q}{Q-2}.Comment: 14 page

    Bitsadze-Samarskii type problem for the integro-differential diffusion-wave equation on the Heisenberg group

    Get PDF
    This paper deals with the fractional generalization of the integro-differential diffusion-wave equation for the Heisenberg sub-Laplacian, with homogeneous Bitsadze-Samarskii type time-nonlocal conditions. For the considered problem, we show the existence, uniqueness and the explicit representation formulae for the solution

    On a Nonlinear Problem of the Breaking Water Waves

    No full text
    The paper is devoted to the initial boundary value problem for the Korteweg-de Vries– Benjamin–Bona–Mahony equation in a finite domain. This particular problem arises from the phenomenon of long wave with small amplitude in fluid. For certain initial-boundary problems for the Korteweg-de Vries–Benjamin–Bona–Mahony equation, we obtain the conditions of blowing-up of global and travelling wave solutions in finite time. The proof of the results is based on the nonlinear capacity method. In closing, we provide the exact and numerical examples.Настоящая работа посвящена начальной краевой задаче для уравнения Кортевега-де Фриза - Бенджамина - Бона - Махони в конечной области. Эта задача возникает из-за явления длинной волны с малой амплитудой в жидкости. Для некоторых начально-краевых задач для уравнения Кортевега-де Фриза - Бенджамина - Бона - Махони мы получили условия разрушения глобальных решений и решений типа бегущей волны за конечное время. Доказательство результатов основано на методе нелинейной емкости. В заключение мы приводим точные и численные примеры

    Qualitative properties of solutions to the nonlinear time-space fractional diffusion equation

    Full text link
    In the present paper, we study the Cauchy-Dirichlet problem to the nonlocal nonlinear diffusion equation with polynomial nonlinearities D0tαu+(Δ)psu=γum1u+μuq2u,γ,μR,m>0,q>1,\mathcal{D}_{0|t}^{\alpha }u+(-\Delta)^s_pu=\gamma|u|^{m-1}u+\mu|u|^{q-2}u,\,\gamma,\mu\in\mathbb{R},\,m>0,q>1, involving time-fractional Caputo derivative D0tα\mathcal{D}_{0|t}^{\alpha} and space-fractional pp-Laplacian operator (Δ)ps(-\Delta)^s_p. We give a simple proof of the comparison principle for the considered problem using purely algebraic relations, for different sets of γ,μ,m\gamma,\mu,m and qq. The Galerkin approximation method is used to prove the existence of a local weak solution. The blow-up phenomena, existence of global weak solutions and asymptotic behavior of global solutions are classified using the comparison principle.Comment: 33 page

    P A SOME PROBLEMS FOR FRACTIONAL ANALOGUE OF LAPLACE EQUATION

    No full text
    Abstract: In this paper we study some boundary value problems for fractional analogue of Laplace equation in a rectangular. Theorems about existence and uniqueness of a solution of the considered problems are proved by spectral method
    corecore