5 research outputs found

    Preparation of SnO2 thin films for photovoltaic electrode materials using sol-gel method

    No full text
    Celem przeprowadzonych badań było otrzymanie cienkich warstw SnO2 na powierzchniach szklanych przy użyciu techniki zol-żel, z zastosowaniem organicznych związków cyny. Warstwy otrzymywano przez nanoszenie zolu SnO2 w metanolu techniką dip coating. Otrzymana warstwa była następnie poddawana kalcynacji w atmosferze utleniającej. Otrzymano serię materiałów zawierających od 1. do 12. warstw SnO2 na powierzchni podłoża szklanego. Uzyskane warstwy poddano charakterystyce za pomocą techniki XRD, SEM, SEM-EDS, UV/VIS. Równolegle przeprowadzono badania czasowo-rozdzielcze procesu schnięcia warstwy z wykorzystaniem techniki FT-IR (ATR).The aim of the study was to obtain SnO2 thin films on glass using a sol-gel technique and organic tin compounds. The layers were prepared by dip coating deposition of SnO2 sol in methanol. The resulting layer was then subjected to a process of calcining in an oxidizing atmosphere. To give a series of materials comprising from one to twelve layers of SnO2 on the surface of the glass substrate. The obtained film was subjected to characterization by XRD, SEM, SEM-EDS and UV-Vis technique. Above that time-resolved tests of the layer drying process using the technique of FT-IR (ATR) were carried out

    Hydrophobic and Anti-Icing Behavior of UV-Laser-Treated Polyester Resin-Based Gelcoats

    Get PDF
    Ice accumulation on wind turbine blades due to the impact of supercooled water droplets can be reduced by the application of surfaces with anti-icing properties. Hydrophobic surfaces are considered as a promising solution because of their water repellent behavior. In recent years, short-pulsed laser technologies have been developed as an efficient technique to modify the surface properties of materials. However, the anti-icing properties of such surfaces have not yet been validated. In this work, a hybrid modification of polyester resin-based gelcoats was adopted. Laser patterning (LP) was used to produce periodic surface structures on modified unsaturated polyester resin (UPR) substrates. One of the innovations of this research is the utilization of novel purpose-made chemical modifiers for gelcoats. The implementation of linear polymethylhydrosiloxane (PMHS) as a building block is a key improvement in terms of durability and functionality of the coating, since there is an option of introducing not only groups bonding in the polyester into one molecule, but also groups that increase hydrophobicity. The other novelty is a successfully conducted experiment combining such chemical modification with laser texturization of the surface. The influence of the laser energy, pattern shape, and spatial periods on the topographical characteristics and hydrophobicity as well as the anti-icing properties of the produced surfaces were investigated. To characterize the surface topography of the produced structures, scanning electron microscopy (SEM) and profilometer were utilized. Measurements of the wettability parameters (static contact angle and contact angle hysteresis) on the treated surfaces allowed the identification of the influence of wetting behavior and laser parameters on the investigated materials. Anti-icing properties were characterized by ice adhesion (IA) and freezing delay time (FDT) tests. It was found that hybrid modification of unsaturated polyester resin by chemical modifiers and laser treatment increased the hydrophobic and anti-icing properties of polyester gelcoats.This research was funded by National Centre for Research and Development (NCBiR), grant number LIDER/16/0068/L-9/17/NCBR/2018.Peer reviewe
    corecore