36 research outputs found

    The equilibrium states of open quantum systems in the strong coupling regime

    Full text link
    In this work we investigate the late-time stationary states of open quantum systems coupled to a thermal reservoir in the strong coupling regime. In general such systems do not necessarily relax to a Boltzmann distribution if the coupling to the thermal reservoir is non-vanishing or equivalently if the relaxation timescales are finite. Using a variety of non-equilibrium formalisms valid for non-Markovian processes, we show that starting from a product state of the closed system = system + environment, with the environment in its thermal state, the open system which results from coarse graining the environment will evolve towards an equilibrium state at late-times. This state can be expressed as the reduced state of the closed system thermal state at the temperature of the environment. For a linear (harmonic) system and environment, which is exactly solvable, we are able to show in a rigorous way that all multi-time correlations of the open system evolve towards those of the closed system thermal state. Multi-time correlations are especially relevant in the non-Markovian regime, since they cannot be generated by the dynamics of the single-time correlations. For more general systems, which cannot be exactly solved, we are able to provide a general proof that all single-time correlations of the open system evolve to those of the closed system thermal state, to first order in the relaxation rates. For the special case of a zero-temperature reservoir, we are able to explicitly construct the reduced closed system thermal state in terms of the environmental correlations.Comment: 20 pages, 2 figure

    Quantum and classical fluctuation theorems from a decoherent histories, open-system analysis

    Full text link
    In this paper we present a first-principles analysis of the nonequilibrium work distribution and the free energy difference of a quantum system interacting with a general environment (with arbitrary spectral density and for all temperatures) based on a well-understood micro-physics (quantum Brownian motion) model under the conditions stipulated by the Jarzynski equality [C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997)] and Crooks' fluctuation theorem [G. E. Crooks, Phys. Rev. E 60, 2721 (1999)] (in short FTs). We use the decoherent history conceptual framework to explain how the notion of trajectories in a quantum system can be made viable and use the environment-induced decoherence scheme to assess the strength of noise which could provide sufficient decoherence to warrant the use of trajectories to define work in open quantum systems. From the solutions to the Langevin equation governing the stochastic dynamics of such systems we were able to produce formal expressions for these quantities entering in the FTs, and from them prove explicitly the validity of the FTs at the high temperature limit. At low temperatures our general results would enable one to identify the range of parameters where FTs may not hold or need be expressed differently. We explain the relation between classical and quantum FTs and the advantage of this micro-physics open-system approach over the phenomenological modeling and energy-level calculations for substitute closed quantum systems

    Waterpipe (narghile) smoking among medical and non-medical university students in Turkey

    Get PDF
    Objectives. This investigation was performed in order to determine the prevalence rate of waterpipe smoking in students of Erciyes University and the effects of some socio-demographic factors

    Vortices in Trapped Boson-Fermion Mixtures

    No full text
    We consider a trapped system of atomic boson-fermion mixture with a quantized vortez. We investigate the density profiles of bosonic and fermionic components as functions of the boson-boson and boson-fermion short-range interaction strenghts within the mean-field approach. Stability of avortez and conditions for the related system of droplets of He-he mixtures

    Geometric Heat Engines Featuring Power that Grows with Efficiency

    No full text
    corecore