1,303 research outputs found

    Three Dimensional Polarimetric Neutron Tomography of Magnetic Fields

    Get PDF
    Through the use of Time-of-Flight Three Dimensional Polarimetric Neutron Tomography (ToF 3DPNT) we have for the first time successfully demonstrated a technique capable of measuring and reconstructing three dimensional magnetic field strengths and directions unobtrusively and non-destructively with the potential to probe the interior of bulk samples which is not amenable otherwise. Using a pioneering polarimetric set-up for ToF neutron instrumentation in combination with a newly developed tailored reconstruction algorithm, the magnetic field generated by a current carrying solenoid has been measured and reconstructed, thereby providing the proof-of-principle of a technique able to reveal hitherto unobtainable information on the magnetic fields in the bulk of materials and devices, due to a high degree of penetration into many materials, including metals, and the sensitivity of neutron polarisation to magnetic fields. The technique puts the potential of the ToF time structure of pulsed neutron sources to full use in order to optimise the recorded information quality and reduce measurement time.Comment: 12 pages, 4 figure

    Maximum-likelihood absorption tomography

    Full text link
    Maximum-likelihood methods are applied to the problem of absorption tomography. The reconstruction is done with the help of an iterative algorithm. We show how the statistics of the illuminating beam can be incorporated into the reconstruction. The proposed reconstruction method can be considered as a useful alternative in the extreme cases where the standard ill-posed direct-inversion methods fail.Comment: 7 pages, 5 figure

    The Feature Importance Ranking Measure

    Full text link
    Most accurate predictions are typically obtained by learning machines with complex feature spaces (as e.g. induced by kernels). Unfortunately, such decision rules are hardly accessible to humans and cannot easily be used to gain insights about the application domain. Therefore, one often resorts to linear models in combination with variable selection, thereby sacrificing some predictive power for presumptive interpretability. Here, we introduce the Feature Importance Ranking Measure (FIRM), which by retrospective analysis of arbitrary learning machines allows to achieve both excellent predictive performance and superior interpretation. In contrast to standard raw feature weighting, FIRM takes the underlying correlation structure of the features into account. Thereby, it is able to discover the most relevant features, even if their appearance in the training data is entirely prevented by noise. The desirable properties of FIRM are investigated analytically and illustrated in simulations.Comment: 15 pages, 3 figures. to appear in the Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD), 200

    Generalized 2d dilaton gravity with matter fields

    Get PDF
    We extend the classical integrability of the CGHS model of 2d dilaton gravity [1] to a larger class of models, allowing the gravitational part of the action to depend more generally on the dilaton field and, simultaneously, adding fermion- and U(1)-gauge-fields to the scalar matter. On the other hand we provide the complete solution of the most general dilaton-dependent 2d gravity action coupled to chiral fermions. The latter analysis is generalized to a chiral fermion multiplet with a non-abelian gauge symmetry as well as to the (anti-)self-dual sector df = *df (df = -*df) of a scalar field f.Comment: 37 pages, Latex; typos and Eqs. (44,45) corrected; paragraph on p. 26, referring to a work of S. Solodukhin, reformulated; references adde

    Atmospheric Pressure and Onset of Episodes of Meniere’s Disease - A Repeated Measures Study

    Get PDF
    External changes of air pressure are transmitted to the middle and inner ear and may be used therapeutically in Menière's disease, one of the most common vertigo disorders. We analyzed the possible relationship of atmospheric pressure and other meteorological parameters with the onset of MD vertigo episodes in order to determine whether atmospheric pressure changes play a role in the occurrence of MD episodes.Patients of a tertiary outpatient dizziness clinic diagnosed with MD were asked to keep a daily vertigo diary to document MD episodes (2004-2009). Local air pressure, absolute temperature and dew point temperature were acquired on an hourly basis. Change in meteorological parameters was conceptualized as the maximum difference in a 24 hour time frame preceding each day. Effects were estimated using additive mixed models with a random participant effect. We included lagged air parameters, age, sex, weekday and season in the model.A total of 56 persons (59% female) with mean age 54 years were included. Mean follow-up time was 267 days. Persons experienced on average 10.3 episodes during the observation period (median 8). Age and change in air pressure were significantly associated with vertigo onset risk (Odds Ratio = 0.979 and 1.010). We could not show an effect of sex, weekday, season, air temperature, and dew point temperature.Change in air pressure was significantly associated with onset of MD episodes, suggesting a potential triggering mechanism in the inner ear. MD patients may possibly use air pressure changes as an early warning system for vertigo attacks in the future

    A path integral approach to the dynamics of a random chain with rigid constraints

    Full text link
    In this work the dynamics of a freely jointed random chain which fluctuates at constant temperature in some viscous medium is studied. The chain is regarded as a system of small particles which perform a brownian motion and are subjected to rigid constraints which forbid the breaking of the chain. For simplicity, all interactions among the particles have been switched off and the number of dimensions has been limited to two. The problem of describing the fluctuations of the chain in the limit in which it becomes a continuous system is solved using a path integral approach, in which the constraints are imposed with the insertion in the path integral of suitable Dirac delta functions. It is shown that the probability distribution of the possible conformations in which the fluctuating chain can be found during its evolution in time coincides with the partition function of a field theory which is a generalization of the nonlinear sigma model in two dimensions. Both the probability distribution and the generating functional of the correlation functions of the positions of the beads are computed explicitly in a semiclassical approximation for a ring-shaped chain.Comment: 36 pages, 2 figures, LaTeX + REVTeX4 + graphicx, minor changes in the text, reference adde

    Classical and Quantum Gravity in 1+1 Dimensions, Part I: A Unifying Approach

    Full text link
    We provide a concise approach to generalized dilaton theories with and without torsion and coupling to Yang-Mills fields. Transformations on the space of fields are used to trivialize the field equations locally. In this way their solution becomes accessible within a few lines of calculation only. In this first of a series of papers we set the stage for a thorough global investigation of classical and quantum aspects of more or less all available 2D gravity-Yang-Mills models.Comment: 24 pages, no figures, some sign errors in Eqs. 52--59 have been corrected (according to the Erratum

    Quantization of Two-Dimensional Gravity with Dynamical Torsion

    Get PDF
    We consider two-dimensional gravity with dynamical torsion in the Batalin - Vilkovisky and Batalin - Lavrov - Tyutin formalisms of gauge theories quantization as well as in the background field method.Comment: 12 pages, LaTe
    corecore