24 research outputs found

    Positive Regulation of DNA Double Strand Break Repair Activity during Differentiation of Long Life Span Cells: The Example of Adipogenesis

    Get PDF
    Little information is available on the ability of terminally differentiated cells to efficiently repair DNA double strand breaks (DSBs), and one might reasonably speculate that efficient DNA repair of these threatening DNA lesions, is needed in cells of long life span with no or limited regeneration from precursor. Few tissues are available besides neurons that allow the study of DNA DSBs repair activity in very long-lived cells. Adipocytes represent a suitable model since it is generally admitted that there is a very slow turnover of adipocytes in adult. Using both Pulse Field Gel Electrophoresis (PFGE) and the disappearance of the phosphorylated form of the histone variant H2AX, we demonstrated that the ability to repair DSBs is increased during adipocyte differentiation using the murine pre-adipocyte cell line, 3T3F442A. In mammalian cells, DSBs are mainly repaired by the non-homologous end-joining pathway (NHEJ) that relies on the DNA dependent protein kinase (DNA-PK) activity. During the first 24 h following the commitment into adipogenesis, we show an increase in the expression and activity of the catalytic sub-unit of the DNA-PK complex, DNA-PKcs. The increased in DNA DSBs repair activity observed in adipocytes was due to the increase in DNA-PK activity as shown by the use of DNA-PK inhibitor or sub-clones of 3T3F442A deficient in DNA-PKcs using long term RNA interference. Interestingly, the up-regulation of DNA-PK does not regulate the differentiation program itself. Finally, similar positive regulation of DNA-PKcs expression and activity was observed during differentiation of primary culture of pre-adipocytes isolated from human sub-cutaneous adipose tissue

    Effects of radiation on growth of two human tumour cell lines surviving a previous high dose, low dose-rate, radionuclide exposure

    No full text
    Effects of radiation on growth of two human tumour cell lines that survived a previous high dose, low dose-rate radionuclide exposure simulating intensive radionuclide therapy, were analyzed. The purpose was to investigate whether the survivors gained therapy induced changes in growth and radiation response. The U118MG, ParRes (parental resistant), and U373MG, ParSen (parental sensitive), glioma cells were used because they are known to be low dose-rate radiation resistant and sensitive, respectively. These cells were initially exposed to high dose, low dose-rate radiation for 24 h and surviving U118MG and U373MG cells formed new cultures called SurRes (surviving resistant) and SurSen (surviving sensitive), respectively. All four cell types were then exposed to graded acute radiation doses, 0-8 Gy, and analyzed for radiation induced growth disturbances. They were also analyzed regarding DNA-content and cell cycle distributions. The SurRes cells regained in most cases the same growth rate, had the same growth delays and showed generally a similar response as the original ParRes cells to the 0-8 Gy exposures. In contrast, the SurSen cells had in all cases slower growth rate and longer growth delays than the original ParSen cells after the 0-8 Gy exposures. There were no signs of radiation-induced radioresistance. The slow growing SurSen cells contained about 80% more DNA and had more cells in G1 and fewer in G2 than the ParSen cells. The conclusion is that tumour cells surviving high dose, low dose-rate, radionuclide therapy, afterwards can react differently to a new radiation exposure
    corecore