35 research outputs found

    Continuous digital hypothermia prevents lamellar failure in the euglycaemic hyperinsulinaemic clamp model of equine laminitis

    Get PDF
    Continuous digital hypothermia can prevent the development and progression of laminitis associated with sepsis but its effects on laminitis due to hyperinsulinaemia are unknown.To determine the effects of continuous digital hypothermia on laminitis development in the euglycaemic hyperinsulinaemic clamp model.Randomised, controlled (within subject), blinded, experiment.Eight clinically normal Standardbred horses underwent laminitis induction using the euglycaemic hyperinsulinaemic clamp model (EHC). At initiation of the EHC, one forelimb was continuously cooled (ICE), with the other maintained at ambient temperature (AMB). Dorsal lamellar sections (proximal, middle, distal) were harvested 48 h after initiation of the EHC and were analysed using histological scoring (0-3) and histomorphometry. Cellular proliferation was quantified by counting epidermal cell nuclei staining positive with an immunohistochemical proliferation marker (TPX2).Severe elongation and disruption of SEL with dermo-epidermal separation (score of 3) was observed in all AMB feet at one or more section locations, but was not observed in any ICE sections. Overall 92% of AMB sections received the most severe histological score (grade 3) and 8% were grade 2, whereas ICE sections were classified as either grade 1 (50%) or grade 2 (50%). Relative to AMB feet, ICE sections were 98% less likely to exhibit grades 2 or 3 (OR: 0.02, 95% CI 0.001, 0.365;

    A phase II study evaluating neo-/adjuvant EIA chemotherapy, surgical resection and radiotherapy in high-risk soft tissue sarcoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The role of chemotherapy in high-risk soft tissue sarcoma is controversial. Though many patients undergo initial curative resection, distant metastasis is a frequent event, resulting in 5-year overall survival rates of only 50-60%. Neo-adjuvant and adjuvant chemotherapy (CTX) has been applied to achieve pre-operative cytoreduction, assess chemosensitivity, and to eliminate occult metastasis. Here we report on the results of our non-randomized phase II study on neo-adjuvant treatment for high-risk STS.</p> <p>Method</p> <p>Patients with potentially curative high-risk STS (size ≥ 5 cm, deep/extracompartimental localization, tumor grades II-III [FNCLCC]) were included. The protocol comprised 4 cycles of neo-adjuvant chemotherapy (EIA, etoposide 125 mg/m<sup>2 </sup>iv days 1 and 4, ifosfamide 1500 mg/m<sup>2 </sup>iv days 1 - 4, doxorubicin 50 mg/m<sup>2 </sup>day 1, pegfilgrastim 6 mg sc day 5), definitive surgery with intra-operative radiotherapy, adjuvant radiotherapy and 4 adjuvant cycles of EIA.</p> <p>Result</p> <p>Between 06/2005 and 03/2010 a total of 50 subjects (male = 33, female = 17, median age 50.1 years) were enrolled. Median follow-up was 30.5 months. The majority of primary tumors were located in the extremities or trunk (92%), 6% originated in the abdomen/retroperitoneum. Response by RECIST criteria to neo-adjuvant CTX was 6% CR (n = 3), 24% PR (n = 12), 62% SD (n = 31) and 8% PD (n = 4). Local recurrence occurred in 3 subjects (6%). Distant metastasis was observed in 12 patients (24%). Overall survival (OS) and disease-free survival (DFS) at 2 years was 83% and 68%, respectively. Multivariate analysis failed to prove influence of resection status or grade of histological necrosis on OS or DFS. Severe toxicities included neutropenic fever (4/50), cardiac toxicity (2/50), and CNS toxicity (4/50) leading to CTX dose reductions in 4 subjects. No cases of secondary leukemias were observed so far.</p> <p>Conclusion</p> <p>The current protocol is feasible for achieving local control rates, as well as OS and DFS comparable to previously published data on neo-/adjuvant chemotherapy in this setting. However, the definitive role of chemotherapy remains unclear in the absence of large, randomized trials. Therefore, the current regimen can only be recommended within a clinical study, and a possibly increased risk of secondary leukemias has to be taken into account.</p> <p>Trial registration</p> <p>ClinicalTrials.gov <a href="http://www.clinicaltrials.gov/ct2/show/NCT01382030">NCT01382030</a>, EudraCT 2004-002501-72</p

    Influence of canine donor plasma hemostatic protein concentration on quality of cryoprecipitate

    No full text
    Background Cryoprecipitate (CRYO) is a plasma component containing high concentrations of factor VIII (FVIII), von Willebrand factor (VWF), and fibrinogen. Because Greyhounds are reported to have lower plasma VWF and fibrinogen concentrations, their plasma may not yield high potency CRYO. Objectives To determine if plasma hemostatic protein concentration is a good predictor of CRYO potency and if a difference exists in quality of CRYO prepared from Greyhounds versus non‐Greyhounds. Animals Twenty Greyhounds and 20 non‐Greyhounds. Methods A 450 mL unit of blood was collected from each donor, centrifuged to prepare fresh frozen plasma (FFP), and processed to CRYO. Aliquots of FFP and CRYO were analyzed for FVIII, VWF, and fibrinogen content and factor recovery. Results A positive correlation was found among donor plasma FVIII, VWF and fibrinogen concentration, and CRYO factor content (P < .001). Mean recovery was highest for VWF (67%), followed by fibrinogen (47%), and FVIII (37%). No breed difference was found in mean CRYO FVIII content, but CRYO VWF and fibrinogen were lower in Greyhounds (P = .004 and P < .001, respectively). No difference was found between Greyhounds and non‐Greyhounds for the number of CRYO units meeting human blood banking standards. Conclusions and Clinical Importance Factor concentration in FFP is associated with CRYO potency, suggesting that prescreening of blood donors may enhance CRYO quality. Despite lower VWF and fibrinogen content, CRYO prepared from Greyhounds is acceptable based on blood banking standards for humans, indicating that Greyhound FFP does not need to be excluded from CRYO production

    Lamellar perfusion and energy metabolism in a preferential weight bearing model

    No full text
    Background: Supporting limb laminitis (SLL) is suspected to be caused by lamellar ischaemia as a consequence of increased mechanical load.Objectives: Examine the effects of prolonged preferential weight bearing (PWB) on lamellar perfusion and metabolism.Study design:\ua0In vivo\ua0experiment.Methods: Microdialysis probes were inserted in the lamellar and sublamellar dermis of one forelimb in 13 Standardbred horses. In 6 horses, a platform shoe (contralateral forelimb) was used to induce increased load on the microdialysis‐instrumented forelimb (PWB). The remaining 7 horses were controls (CON). All horses were housed in stocks with limb weight distribution logged continuously for 92 h. Microdialysate was collected and analysed every 4 h for glucose, lactate, pyruvate and lactate to pyruvate ratio (L:P). Microdialysis urea clearance was used to estimate lamellar perfusion. Data were analysed using a mixed‐effects linear regression model.Results: Median [IQR] load on the microdialysis‐instrumented limb was equivalent to 38.7% bwt. [37.3‐40.3] in PWB and 27.3% bwt. [26.6‐28] in CON. Limb offloading frequency increased in CON (

    Exenatide Treatment Alone Improves β-Cell Function in a Canine Model of Pre-Diabetes.

    No full text
    Exenatide's effects on glucose metabolism have been studied extensively in diabetes but not in pre-diabetes.We examined the chronic effects of exenatide alone on glucose metabolism in pre-diabetic canines.After 10 weeks of high-fat diet (HFD), adult dogs received one injection of streptozotocin (STZ, 18.5 mg/kg). After induction of pre-diabetes, while maintained on HFD, animals were randomized to receive either exenatide (n = 7) or placebo (n = 7) for 12 weeks. β-Cell function was calculated from the intravenous glucose tolerance test (IVGTT, expressed as the acute insulin response, AIRG), the oral glucose tolerance test (OGTT, insulinogenic index) and the graded-hyperglycemic clamp (clamp insulinogenic index). Whole-body insulin sensitivity was assessed by the IVGTT. At the end of the study, pancreatic islets were isolated to assess β-cell function in vitro.OGTT: STZ caused an increase in glycemia at 120 min by 22.0% (interquartile range, IQR, 31.5%) (P = 0.011). IVGTT: This protocol also showed a reduction in glucose tolerance by 48.8% (IQR, 36.9%) (P = 0.002). AIRG decreased by 54.0% (IQR, 40.7%) (P = 0.010), leading to mild fasting hyperglycemia (P = 0.039). Exenatide, compared with placebo, decreased body weight (P<0.001) without altering food intake, fasting glycemia, insulinemia, glycated hemoglobin A1c, or glucose tolerance. Exenatide, compared with placebo, increased both OGTT- (P = 0.040) and clamp-based insulinogenic indexes (P = 0.016), improved insulin secretion in vitro (P = 0.041), but had no noticeable effect on insulin sensitivity (P = 0.405).In pre-diabetic canines, 12-week exenatide treatment improved β-cell function but not glucose tolerance or insulin sensitivity. These findings demonstrate partial beneficial metabolic effects of exenatide alone on an animal model of pre-diabetes

    Novel canine models of obese prediabetes and mild type 2 diabetes

    No full text
    Human type 2 diabetes mellitus (T2DM) is often characterized by obesity-associated insulin resistance (IR) and β-cell function deficiency. Development of relevant large animal models to study T2DM is important and timely, because most existing models have dramatic reductions in pancreatic function and no associated obesity and IR, features that resemble more T1DM than T2DM. Our goal was to create a canine model of T2DM in which obesity-associated IR occurs first, followed by moderate reduction in β-cell function, leading to mild diabetes or impaired glucose tolerance. Lean dogs (n = 12) received a high-fat diet that increased visceral (52%, P < 0.001) and subcutaneous (130%, P < 0.001) fat and resulted in a 31% reduction in insulin sensitivity (SI) (5.8 ± 0.7 × 10−4 to 4.1 ± 0.5 × 10−4 μU·ml−1·min−1, P < 0.05). Animals then received a single low dose of streptozotocin (STZ; range 30–15 mg/kg). The decrease in β-cell function was dose dependent and resulted in three diabetes models: 1) frank hyperglycemia (high STZ dose); 2) mild T2DM with normal or impaired fasting glucose (FG), 2-h glucose >200 mg/dl during OGTT and 77–93% AIRg reduction (intermediate dose); and 3) prediabetes with normal FG, normal 2-h glucose during OGTT and 17–74% AIRg reduction (low dose). Twelve weeks after STZ, animals without frank diabetes had 58% more body fat, decreased β-cell function (17–93%), and 40% lower SI. We conclude that high-fat feeding and variable-dose STZ in dog result in stable models of obesity, insulin resistance, and 1) overt diabetes, 2) mild T2DM, or 3) impaired glucose tolerance. These models open new avenues for studying the mechanism of compensatory changes that occur in T2DM and for evaluating new therapeutic strategies to prevent progression or to treat overt diabetes
    corecore