827 research outputs found

    Resolving discrete pulsar spin-down states with current and future instrumentation

    Full text link
    An understanding of pulsar timing noise offers the potential to improve the timing precision of a large number of pulsars as well as facilitating our understanding of pulsar magnetospheres. For some sources, timing noise is attributable to a pulsar switching between two different spin-down rates (ν˙)(\dot{\nu}). Such transitions may be common but difficult to resolve using current techniques. In this work, we use simulations of ν˙\dot{\nu}-variable pulsars to investigate the likelihood of resolving individual ν˙\dot{\nu} transitions. We inject step-changes in the value of ν˙\dot{\nu} with a wide range of amplitudes and switching timescales. We then attempt to redetect these transitions using standard pulsar timing techniques. The pulse arrival-time precision and the observing cadence are varied. Limits on ν˙\dot{\nu} detectability based on the effects such transitions have on the timing residuals are derived. With the typical cadences and timing precision of current timing programs, we find we are insensitive to a large region of Δν˙\Delta \dot{\nu} parameter space which encompasses small, short timescale switches. We find, where the rotation and emission states are correlated, that using changes to the pulse shape to estimate ν˙\dot{\nu} transition epochs, can improve detectability in certain scenarios. The effects of cadence on Δν˙\Delta \dot{\nu} detectability are discussed and we make comparisons with a known population of intermittent and mode-switching pulsars. We conclude that for short timescale, small switches, cadence should not be compromised when new generations of ultra-sensitive radio telescopes are online.Comment: 19 pages, 11 figure

    Neutron star glitches have a substantial minimum size

    Get PDF
    Glitches are sudden spin-up events that punctuate the steady spin down of pulsars and are thought to be due to the presence of a superfluid component within neutron stars. The precise glitch mechanism and its trigger, however, remain unknown. The size of glitches is a key diagnostic for models of the underlying physics. While the largest glitches have long been taken into account by theoretical models, it has always been assumed that the minimum size lay below the detectability limit of the measurements. In this paper we define general glitch detectability limits and use them on 29 years of daily observations of the Crab pulsar, carried out at Jodrell Bank Observatory. We find that all glitches lie well above the detectability limits and by using an automated method to search for small events we are able to uncover the full glitch size distribution, with no biases. Contrary to the prediction of most models, the distribution presents a rapid decrease of the number of glitches below ~0.05 μ\muHz. This substantial minimum size indicates that a glitch must involve the motion of at least several billion superfluid vortices and provides an extra observable which can greatly help the identification of the trigger mechanism. Our study also shows that glitches are clearly separated from all the other rotation irregularities. This supports the idea that the origin of glitches is different to that of timing noise, which comprises the unmodelled random fluctuations in the rotation rates of pulsars.Comment: 8 pages; 4 figures. Accepted for publication in MNRA

    Very Long Baseline Interferometry Measured Proper Motion and Parallax of the γ\gamma-ray Millisecond Pulsar PSR J0218+4232

    Full text link
    PSR J0218++4232 is a millisecond pulsar (MSP) with a flux density \sim 0.9 mJy at 1.4 GHz. It is very bright in the high-energy X-ray and γ\gamma-ray domains. We conducted an astrometric program using the European VLBI Network (EVN) at 1.6 GHz to measure its proper motion and parallax. A model-independent distance would also help constrain its γ\gamma-ray luminosity. We achieved a detection of signal-to-noise ratio S/N > 37 for the weak pulsar in all five epochs. Using an extragalactic radio source lying 20 arcmin away from the pulsar, we estimate the pulsar's proper motion to be μαcosδ=5.35±0.05\mu_{\alpha}\cos\delta=5.35\pm0.05 mas yr1^{-1} and μδ=3.74±0.12\mu_{\delta}=-3.74\pm 0.12 mas yr1^{-1}, and a parallax of π=0.16±0.09\pi=0.16\pm0.09 mas. The very long baseline interferometry (VLBI) proper motion has significantly improved upon the estimates from long-term pulsar timing observations. The VLBI parallax provides the first model-independent distance constraints: d=6.32.3+8.0d=6.3^{+8.0}_{-2.3} kpc, with a corresponding 3σ3\sigma lower-limit of d=2.3d=2.3 kpc. This is the first pulsar trigonometric parallax measurement based solely on EVN observations. Using the derived distance, we believe that PSR J0218++4232 is the most energetic γ\gamma-ray MSP known to date. The luminosity based on even our 3σ\sigma lower-limit distance is high enough to pose challenges to the conventional outer gap and slot gap models.Comment: 5 pages, 2 figures, 2 tables; published in the Astrophysical Journal Letters on 2014 Feb. 1

    Search for Discrete Refractive Scattering Events

    Get PDF
    We have searched for discrete refractive scattering events (including effects due to possible non-multiple diffractive scattering) at meter wavelengths in the direction of two close by pulsars B0950+08 and B1929+10, where we looked for spectral signatures associated with the multiple imaging of pulsars due to scattering in the interstellar medium. We do not find any signatures of such events in the direction of either source over a spectral periodicity range of 50 KHz to 5 MHz. Our analysis puts strong upper limits on the column density contrast associated with a range of spatial scales of the interstellar electron density irregularities along these lines of sight.Comment: Accepted for publication in Astronomy & Astrophysic

    Are all fast radio bursts repeating sources?

    Full text link
    We present Monte-Carlo simulations of a cosmological population of repeating fast radio burst (FRB) sources whose comoving density follows the cosmic star formation rate history. We assume a power-law model for the intrinsic energy distribution for each repeating FRB source located at a randomly chosen position in the sky and simulate their dispersion measures (DMs) and propagation effects along the chosen lines-of-sight to various telescopes. In one scenario, an exponential distribution for the intrinsic wait times between pulses is chosen, and in a second scenario we model the observed pulse arrival times to follow a Weibull distribution. For both models we determine whether the FRB source would be deemed a repeater based on the telescope sensitivity and time spent on follow-up observations. We are unable to rule out the existence of a single FRB population based on comparisons of our simulations with the longest FRB follow-up observations performed. We however rule out the possibility of FRBs 171020 and 010724 repeating with the same rate statistics as FRB 121102 and also constrain the slope of a power-law fit to the FRB energy distribution to be 2.0<γ<1.0-2.0 < \gamma <-1.0. All-sky simulations of repeating FRB sources imply that the detection of singular events correspond to the bright tail-end of the adopted energy distribution due to the combination of the increase in volume probed with distance, and the position of the burst in the telescope beam.Comment: 10 pages, 4 figures, accepted for publication in MNRA

    X-ray Observations of XSS J12270-4859 in a New Low State: A Transformation to a Disk-Free Rotation-Powered Pulsar Binary

    Get PDF
    We present XMM-Newton and Chandra observations of the low-mass X-ray binary XSS J12270--4859, which experienced a dramatic decline in optical/X-ray brightness at the end of 2012, indicative of the disappearance of its accretion disk. In this new state, the system exhibits previously absent orbital-phase-dependent, large-amplitude X-ray modulations with a decline in flux at superior conjunction. The X-ray emission remains predominantly non-thermal but with an order of magnitude lower mean luminosity and significantly harder spectrum relative to the previous high flux state. This phenomenology is identical to the behavior of the radio millisecond pulsar binary PSR J1023+0038 in the absence of an accretion disk, where the X-ray emission is produced in an intra-binary shock driven by the pulsar wind. This further demonstrates that XSS J12270-4859 no longer has an accretion disk and has transformed to a full-fledged eclipsing "redback" system that hosts an active rotation-powered millisecond pulsar. There is no evidence for diffuse X-ray emission associated with the binary that may arise due to outflows or a wind nebula. An extended source situated 1.5' from XSS J12270--4859 is unlikely to be associated, and is probably a previously uncatalogued galaxy cluster.Comment: 8 pages, 6 figures; accepted for publication in the Astrophysical Journa

    The identification of the optical companion to the binary millisecond pulsar J0610-2100 in the Galactic field

    Full text link
    We have used deep V and R images acquired at the ESO Very Large Telescope to identify the optical companion to the binary pulsar PSR J0610-2100, one of the black-widow millisecond pulsars recently detected by the Fermi Gamma-ray Telescope in the Galactic plane. We found a faint star (V~26.7) nearly coincident (\delta r ~0".28) with the pulsar nominal position. This star is visible only in half of the available images, while it disappears in the deepest ones (those acquired under the best seeing conditions), thus indicating that it is variable. Although our observations do not sample the entire orbital period (P=0.28 d) of the pulsar, we found that the optical modulation of the variable star nicely correlates with the pulsar orbital period and describes a well defined peak (R~25.6) at \Phi=0.75, suggesting a modulation due to the pulsar heating. We tentatively conclude that the companion to PSR J0610-2100 is a heavily ablated very low mass star (~ 0.02Msun) that completely filled its Roche Lobe.Comment: 17 pages, 5 figures - Accepted for pubblication in Ap
    corecore