1,440 research outputs found

    Effects of sterilization on the energy-dissipating properties of balsa wood

    Get PDF
    Technical report on the effects of sterilization on the energy-dissipating properties of balsa wood is given. Sterilization by ethylene oxide plus heat enhances the average specific energy of balsa while plastic impregnation followed by irradiation-induced polymerization does not

    The Satisfiability Threshold of Random 3-SAT Is at Least 3.52

    Full text link
    We prove that a random 3-SAT instance with clause-to-variable density less than 3.52 is satisfiable with high probability. The proof comes through an algorithm which selects (and sets) a variable depending on its degree and that of its complement

    The Satisfiability Threshold for k-XORSAT

    Get PDF
    We consider "unconstrained" random kk-XORSAT, which is a uniformly random system of mm linear non-homogeneous equations in F2\mathbb{F}_2 over nn variables, each equation containing k3k \geq 3 variables, and also consider a "constrained" model where every variable appears in at least two equations. Dubois and Mandler proved that m/n=1m/n=1 is a sharp threshold for satisfiability of constrained 3-XORSAT, and analyzed the 2-core of a random 3-uniform hypergraph to extend this result to find the threshold for unconstrained 3-XORSAT. We show that m/n=1m/n=1 remains a sharp threshold for satisfiability of constrained kk-XORSAT for every k3k\ge 3, and we use standard results on the 2-core of a random kk-uniform hypergraph to extend this result to find the threshold for unconstrained kk-XORSAT. For constrained kk-XORSAT we narrow the phase transition window, showing that mnm-n \to -\infty implies almost-sure satisfiability, while mn+m-n \to +\infty implies almost-sure unsatisfiability.Comment: Version 2 adds sharper phase transition result, new citation in literature survey, and improvements in presentation; removes Appendix treating k=

    The Random Walk in Generalized Quantum Theory

    Full text link
    One can view quantum mechanics as a generalization of classical probability theory that provides for pairwise interference among alternatives. Adopting this perspective, we ``quantize'' the classical random walk by finding, subject to a certain condition of ``strong positivity'', the most general Markovian, translationally invariant ``decoherence functional'' with nearest neighbor transitions.Comment: 25 pages, no figure

    Energy extremality in the presence of a black hole

    Get PDF
    We derive the so-called first law of black hole mechanics for variations about stationary black hole solutions to the Einstein--Maxwell equations in the absence of sources. That is, we prove that δM=κδA+ωδJ+VdQ\delta M=\kappa\delta A+\omega\delta J+VdQ where the black hole parameters M,κ,A,ω,J,VM, \kappa, A, \omega, J, V and QQ denote mass, surface gravity, horizon area, angular velocity of the horizon, angular momentum, electric potential of the horizon and charge respectively. The unvaried fields are those of a stationary, charged, rotating black hole and the variation is to an arbitrary `nearby' black hole which is not necessarily stationary. Our approach is 4-dimensional in spirit and uses techniques involving Action variations and Noether operators. We show that the above formula holds on any asymptotically flat spatial 3-slice which extends from an arbitrary cross-section of the (future) horizon to spatial infinity.(Thus, the existence of a bifurcation surface is irrelevant to our demonstration. On the other hand, the derivation assumes without proof that the horizon possesses at least one of the following two (related)properties: (ii) it cannot be destroyed by arbitrarily small perturbations of the metric and other fields which may be present, (iiii) the expansion of the null geodesic generators of the perturbed horizon goes to zero in the distant future.)Comment: 30 pages, latex fil

    Large Fluctuations in the Horizon Area and what they can tell us about Entropy and Quantum Gravity

    Get PDF
    We evoke situations where large fluctuations in the entropy are induced, our main example being a spacetime containing a potential black hole whose formation depends on the outcome of a quantum mechanical event. We argue that the teleological character of the event horizon implies that the consequent entropy fluctuations must be taken seriously in any interpretation of the quantal formalism. We then indicate how the entropy can be well defined despite the teleological character of the horizon, and we argue that this is possible only in the context of a spacetime or ``histories'' formulation of quantum gravity, as opposed to a canonical one, concluding that only a spacetime formulation has the potential to compute --- from first principles and in the general case --- the entropy of a black hole. From the entropy fluctuations in a related example, we also derive a condition governing the form taken by the entropy, when it is expressed as a function of the quantal density-operator.Comment: 35 pages, plain Tex, needs mathmacros.tex and msmacros.te

    Stable non-uniform black strings below the critical dimension

    Full text link
    The higher-dimensional vacuum Einstein equation admits translationally non-uniform black string solutions. It has been argued that infinitesimally non-uniform black strings should be unstable in 13 or fewer dimensions and otherwise stable. We construct numerically non-uniform black string solutions in 11, 12, 13, 14 and 15 dimensions. Their stability is investigated using local Penrose inequalities. Weakly non-uniform solutions behave as expected. However, in 12 and 13 dimensions, strongly non-uniform solutions appear to be stable and can have greater horizon area than a uniform string of the same mass. In 14 and 15 dimensions all non-uniform black strings appear to be stable.Comment: 26 pages, 11 figures. V2: reference added, matches published versio
    corecore