32 research outputs found

    Supercritical fluid extraction of soybean oil from the surface of spiked quartz sand - modelling study

    Get PDF
    The extraction of soybean oil from the surface of spiked quartz sand using supercritical CO2 was investigated. Sand as solid was used; it is not porous material so the internal diffusion does not exist, all the soluble material is in the surface of the particles. Sovová’s model has been used in order to obtain an analytical solution to develop the required extraction yield curves. The model simplifies when the internal diffusion can be neglected. The external mass transfer coefficient was determined by fitting the theoretical extraction curve to experimental data. According to the external mass transfer coefficient, a new Sherwood correlation was developed in terms of the dimensionless groups: Reynolds and Schmidt number. It was found that this correlation give superior results when compared to experimental data

    Supercritical fluid extraction of soybean oil from the surface of spiked quartz sand - modelling study

    No full text
    The extraction of soybean oil from the surface of spiked quartz sand using supercritical CO2 was investigated. Sand as solid was used; it is not porous material so the internal diffusion does not exist, all the soluble material is in the surface of the particles. Sovová’s model has been used in order to obtain an analytical solution to develop the required extraction yield curves. The model simplifies when the internal diffusion can be neglected. The external mass transfer coefficient was determined by fitting the theoretical extraction curve to experimental data. According to the external mass transfer coefficient, a new Sherwood correlation was developed in terms of the dimensionless groups: Reynolds and Schmidt number. It was found that this correlation give superior results when compared to experimental data

    Recovery of Pigments from Origanum majorana

    No full text

    Evaluation of supercritical plant extracts on volatile and non volatile biologically active lipophil components

    No full text
    Authors dealt more than ten years with the analysis of supercritical extracts. For extraction (SFE) carbon dioxide was used as supercritical solvent. Fractionation of extracts was carried out by releasing the separations pressure at two stages. The extracts were collected as separate samples successively in time. The traditional extractions were carried out with steam distillation or by using n-hexane and ethanol in Soxhlet apparatus. For the analysis of volatile compounds GC, GC-MS; of non volatile compounds TLC-densitometry and spectroscopic methods were used. The following general characteristics were established comparing the composition of steam distillated oils with that of volatile SFE fractions. The SFE fractions were richer in monoterpene-esters and poorer in alcohols than the essential oils prepared by traditional way (clary sage, lavandel). Regarding the distributi,n of the monoterpene and sesquiterpene compounds, the SFE fractions contained sesquiterpene hydrocarbon in higher percentage than the distillated oils (e.g. 13-caryophyllene in Salvia fruticosa, (3-caryophyllene, y­muurolene, y-cadinene in Ochnum basilicum). Further the proportion of sesquiterpenes increased in SFE fractions collected successively in time.Significant difference was remarkable in respect of the optical rotationability of lovage oil and SFE fraction which was probably caused by the different ratio between the two ligustilid enantiomers. It was verified in some cases that a part of mono- and sesquiterpenes were present originally in a bounded form (glycosides) in plants. Therefore they appeared in essential oil fractions only after previous acidic treatment (Thymus, Origanum species). During the supercritical extraction the azulenogene sesquiterpene lactones did not transform to azulenes (in chamomile, yarrow), but the non volatile SFE fractions of some Asteraceae plant contained sesquiterpene--lacton of unchanged structure in high quantity (e.g. cnicin in blessed thistle, parthenolide in feverfew). Authors obtained also SFE fractions which were rich in triterpenoids and phytosterols (marigold, common dandelion). &nbsp
    corecore