45 research outputs found
Long-term impact of maternal high-fat diet on offspring cardiac health: role of micro-RNA biogenesis.
Heart failure is a worldwide leading cause of death. Diet and obesity are particularly of high concern in heart disease etiology. Gravely, altered nutrition during developmental windows of vulnerability can have long-term impact on heart health; however, the underlying mechanisms are poorly understood. In the understanding of the initiation of chronic diseases related to developmental exposure to environmental challenges, deregulations in epigenetic mechanisms including micro-RNAs have been proposed as key events. In this context, we aimed at delineating the role of micro-RNAs in the programming of cardiac alterations induced by early developmental exposure to nutritional imbalance. To reach our aim, we developed a human relevant model of developmental exposure to nutritional imbalance by maternally exposing rat to high-fat diet during gestation and lactation. In this model, offspring exposed to maternal high-fat diet developed cardiac hypertrophy and increased extracellular matrix depot compared to those exposed to chow diet. Microarray approach performed on cardiac tissue allowed the identification of a micro-RNA subset which was down-regulated in high-fat diet-exposed animals and which were predicted to regulate transforming growth factor-beta (TGFβ)-mediated remodeling. As indicated by in vitro approaches and gene expression measurement in the heart of our animals, decrease in DiGeorge critical region 8 (DGCR8) expression, involved in micro-RNA biogenesis, seems to be a critical point in the alterations of the micro-RNA profile and the TGFβ-mediated remodeling induced by maternal exposure to high-fat diet. Finally, increasing DGCR8 activity and/or expression through hemin treatment in vitro revealed its potential in the rescue of the pro-fibrotic phenotype in cardiomyocytes driven by DGCR8 decrease. These findings suggest that cardiac alterations induced by maternal exposure to high-fat diet is related to abnormalities in TGFβ pathway and associated with down-regulated micro-RNA processing. Our study highlighted DGCR8 as a potential therapeutic target for heart diseases related to early exposure to dietary challenge
Maternal exposure to high-fat diet induces long-term mitochondrial alterations in the offspring heart.
Heart disease is a leading cause of death worldwide, with its prevalence exacerbated by inadequate nutritional intake. Particularly concerning is the elevated risk induced by imbalanced nutrition during development, which can impact lifelong heart health. Recent research has underscored mitochondrial dysregulation as a pivotal mechanism driving the enduring consequences of nutritional excess. Building upon previous findings wherein a maternal high-fat diet (HFD) led to cardiac hypertrophy and fibrosis, our current study aimed to evaluate the impact of such a challenge on myocardial mitochondrial function.
Female rats were fed a chow diet or HFD during gestation and lactation. The hearts of male offspring were analyzed at adulthood. Mitochondrial DNA abundance was evaluated by quantitative polymerase chain reaction. Proteins involved in mitochondrial biogenesis, fusion, fission, damage to the electron transport chain, metabolism, cell death, proliferation, and inflammation were measured by western blot. Mitochondrial clearance was evaluated by the measurement of mitophagy markers on isolated mitochondria. Lipids were visualized by histologic approaches.
We detected decreased cardiac mitochondrial fission factor and mitochondrial adenosine triphosphate synthase beta subunit and increased Parkin, pro-tumor necrosis factor alpha, and pro-interleukin 1 beta protein levels associated with decreased microtubule-associated protein 1A/1B light chain 3B levels in cardiac mitochondrial fraction, with a tendency for increased Oil Red O staining in the adult hearts of male offspring exposed to HFD.
Maternal exposure to HFD enhanced mitochondrial damage and impaired fission and clearance in offspring hearts at adulthood. These alterations were associated with altered expression of proteins involved in the mitochondrial electron transport chain coupled with a propensity for increased fatty acid accumulation and elevated proinflammatory markers
Calorie Restriction in Adulthood Reduces Hepatic Disorders Induced by Transient Postnatal Overfeeding in Mice.
Impaired early nutrition influences the risk of developing metabolic disorders in later life. We observed that transient postnatal overfeeding (OF) in mice induces long-term hepatic alterations, characterized by microsteatosis, fibrosis associated with oxidative stress (OS), and stress-induced premature senescence (SIPS). In this study, we investigated whether such changes can be reversed by moderate calorie restriction (CR). C57BL/6 male mice pups were maintained during lactation in litters adjusted to nine pups in the normal feeding (NF) group and three pups in the transient postnatal OF group. At six months of age, adult mice from the NF and OF groups were randomly assigned to an ad libitum diet or CR (daily energy supply reduced by 20%) for one month. In each group, at the age of seven months, analysis of liver structure, liver markers of OS (superoxide anion, antioxidant defenses), and SIPS (lipofuscin, p53, p21, p16, pRb/Rb, Acp53, sirtuin-1) were performed. CR in the OF group reduced microsteatosis, decreased levels of superoxide anion, and increased protein expression of catalase and superoxide dismutase. Moreover, CR decreased lipofuscin staining, p21, p53, Acp53, and p16 but increased pRb/Rb and sirtuin-1 protein expression. CR did not affect the NF group. These results suggest that CR reduces hepatic disorders induced by OF
Epigenetics provides a bridge between early nutrition and long-term health and a target for disease prevention.
Exposure to nutritional imbalance during early life can influence disease risk lifelong and across generations. In this long-term conditioning, epigenetics constitutes a key mechanism. They bridge environmental cues and the expression of genes involved in the setting of long-standing biological regulations in numerous organs and species. Epigenetic marks are proposed as innovative diagnostic biomarkers and potential targets in the prevention of diseases. However, a number of uncertainties make them difficult to use in clinical approaches in the context of early exposure to nutritional challenge. In conclusion, active investigations in this field are still needed before clinical applications are considered
Sperm epigenome as a marker of environmental exposure and lifestyle, at the origin of diseases inheritance.
Paternal exposure to environmental challenges plays a critical role in the offspring's future health and the transmission of acquired traits through generations. This review summarizes our current knowledge in the new field of epigenomic paternal transmission of health and disease. Epidemiological studies identified that paternal ageing or challenges (imbalanced diets, stress, toxicants, cigarette smoke, alcohol) increased the risk of offspring to develop diseases such as cancer, metabolic, cardiovascular, and neurological diseases. These data were confirmed and deepened in animal models of exposure to challenges including low-protein, low-folate, high-fat diets, exposure to chemicals such as pesticides and herbicides. Even though some toxicants have mutagenic effect on sperm DNA, changes in sperm epigenome seem to be a common thread between different types of challenges. Indeed, epigenetic changes (DNA methylation, chromatin remodeling, small non-coding RNA) in sperm are described as new mechanisms of intergenerational transmission as demonstrated for dioxin, for example. Those epimutations induce dysregulation in genes expression involved in key cellular pathways such as reactive oxygen species and genome stability regulation, in brain-derived neurotrophic factor, calcium and glucocorticoid signaling, and in lipid and glucose metabolism, leading to diseases in offspring. Finally, since each type of environmental challenges has its own signature by inducing epimutations at specific genomic loci, the sperm epigenome might be used as a biomarker in toxicological and risk assessments
Epigenetics and neonatal nutrition.
Epigenetic changes have long-lasting effects on gene expression and are related to, and often induced by, the environment in which early development takes place. In particular, the period of development that extends from pre-conception to early infancy is the period of life during which epigenetic DNA imprinting activity is the most active. Epigenetic changes have been associated with modification of the risk for developing a wide range of adulthood, non-communicable diseases (including cardiovascular diseases, metabolic diseases, diseases of the reproductive system, etc.). This paper reviews the molecular basis of epigenetics, and addresses the issues related to the process of developmental programming of the various areas of human health
Length-based approaches to estimating natural mortality using tagging and fisheries data: The example of the eastern Aleutian Islands, Alaska golden king crab (Lithodes aequispinus)
Offspring of mothers with hyperglycaemia in pregnancy: The short term and long-term impact. What is new?
The continuing rise in the global prevalence of diabetes and overweight or obesity has become a major burden for global health, as the pandemic is affecting both high and low-middle income countries (LMIC). At the same time, a similar pattern has been observed for all forms of hyperglycemia in pregnancy (HIP), diabetes during pregnancy and gestational diabetes. The offspring of mothers with HIP and/or overweight-obesity is receiving increasing attention as advances in early detection and treatment of HIP did not completely prevent macrosomia and its associated short-term perinatal disorders, whilst long term consequences are observed in the mother and in offspring as it reaches adulthood. This review discusses the current developments in the consequences of HIP in the offspring, with a particular focus on its long-term health at adulthood, and on intergenerational and transgenerational effects. HIP is emerging as one of the factors that can contribute, during the window of sensitivity to environmental cues constituted by the preconception, pregnancy, and early childhood, and as an amplifying factor linked to reproduction, to the current global epidemic of diabetes and non-communicable diseases (NCDs)
At the heart of programming: the role of micro-RNAs.
Epidemiological and experimental observations tend to prove that environment, lifestyle or nutritional challenges influence heart functions together with genetic factors. Furthermore, when occurring during sensitive windows of heart development, these environmental challenges can induce an 'altered programming' of heart development and shape the future heart disease risk. In the etiology of heart diseases driven by environmental challenges, epigenetics has been highlighted as an underlying mechanism, constituting a bridge between environment and heart health. In particular, micro-RNAs which are involved in each step of heart development and functions seem to play a crucial role in the unfavorable programming of heart diseases. This review describes the latest advances in micro-RNA research in heart diseases driven by early exposure to challenges and discusses the use of micro-RNAs as potential targets in the reversal of the pathophysiology
