19,419 research outputs found

    Wireless Network-Coded Four-Way Relaying Using Latin Hyper-Cubes

    Full text link
    This paper deals with physical layer network-coding for the four-way wireless relaying scenario where four nodes A, B, C and D wish to communicate their messages to all the other nodes with the help of the relay node R. The scheme given in the paper is based on the denoise-and-forward scheme proposed first by Popovski et al. Intending to minimize the number of channel uses, the protocol employs two phases: Multiple Access (MA) phase and Broadcast (BC) phase with each phase utilizing one channel use. This paper does the equivalent for the four-way relaying scenario as was done for the two-way relaying scenario by Koike-Akino et al., and for three-way relaying scenario in [3]. It is observed that adaptively changing the network coding map used at the relay according to the channel conditions greatly reduces the impact of multiple access interference which occurs at the relay during the MA phase. These network coding maps are so chosen so that they satisfy a requirement called exclusive law. We show that when the four users transmit points from the same M-PSK constellation, every such network coding map that satisfies the exclusive law can be represented by a 4-fold Latin Hyper-Cube of side M. The network code map used by the relay for the BC phase is explicitly obtained and is aimed at reducing the effect of interference at the MA stage.Comment: 14 pages, 6 figures, 2 tables. arXiv admin note: substantial text overlap with arXiv:1112.158

    Behaviour of steel fibre reinforced concrete under cyclic compressive loading

    Get PDF
    An experimental study was carried out to investigate the behaviour of steel fibre reinforced concrete under cyclic compressive loading. Cylindrical specimens containing two volume fractions (one percent and two percent) of steel fibres and plain concrete specimens were tested under uniaxial monotonic and cyclic compressive loading to establish the stress-strain envelope curve, locus of common points and stability points. An analytical expression is established to represent these curves for SFRC. It was also observed that the permissible stress level depends on the plastic strain present in the material. The plastic strain curves are presented and a general form of second order equation is proposed to represent these curves

    A Novel Optical/digital Processing System for Pattern Recognition

    Get PDF
    This paper describes two processing algorithms that can be implemented optically: the Radon transform and angular correlation. These two algorithms can be combined in one optical processor to extract all the basic geometric and amplitude features from objects embedded in video imagery. We show that the internal amplitude structure of objects is recovered by the Radon transform, which is a well-known result, but, in addition, we show simulation results that calculate angular correlation, a simple but unique algorithm that extracts object boundaries from suitably threshold images from which length, width, area, aspect ratio, and orientation can be derived. In addition to circumventing scale and rotation distortions, these simulations indicate that the features derived from the angular correlation algorithm are relatively insensitive to tracking shifts and image noise. Some optical architecture concepts, including one based on micro-optical lenslet arrays, have been developed to implement these algorithms. Simulation test and evaluation using simple synthetic object data will be described, including results of a study that uses object boundaries (derivable from angular correlation) to classify simple objects using a neural network

    Nonlinear propagation of broadband intense electromagnetic waves in an electron-positron plasma

    Get PDF
    A kinetic equation describing the nonlinear evolution of intense electromagnetic pulses in electron-positron (e-p) plasmas is presented. The modulational instability is analyzed for a relativistically intense partially coherent pulse, and it is found that the modulational instability is inhibited by the spectral pulse broadening. A numerical study for the one-dimensional kinetic photon equation is presented. Computer simulations reveal a Fermi-Pasta-Ulam-like recurrence phenomena for localized broadband pulses. The results should be of importance in understanding the nonlinear propagation of broadband intense electromagnetic pulses in e-p plasmas in laser-plasma systems as well as in astrophysical plasma settings.Comment: 16 pages, 5 figures, to appear in Phys. Plasma

    The Intense Radiation Gas

    Full text link
    We present a new dispersion relation for photons that are nonlinearly interacting with a radiation gas of arbitrary intensity due to photon-photon scattering. It is found that the photon phase velocity decreases with increasing radiation intensity, it and attains a minimum value in the limit of super-intense fields. By using Hamilton's ray equations, a self-consistent kinetic theory for interacting photons is formulated. The interaction between an electromagnetic pulse and the radiation gas is shown to produce pulse self-compression and nonlinear saturation. Implications of our new results are discussed.Comment: 7 pages, 1 figure, version to appear in Europhys. Let

    Self-compression and catastrophic collapse of photon bullets in vacuum

    Full text link
    Photon-photon scattering, due to photons interacting with virtual electron-positron pairs, is an intriguing deviation from classical electromagnetism predicted by quantum electrodynamics (QED). Apart from being of fundamental interest in itself, collisions between photons are believed to be of importance in the vicinity of magnetars, in the present generation intense lasers, and in intense laser-plasma/matter interactions; the latter recreating astrophysical conditions in the laboratory. We show that an intense photon pulse propagating through a radiation gas can self-focus, and under certain circumstances collapse. This is due to the response of the radiation background, creating a potential well in which the pulse gets trapped, giving rise to photonic solitary structures. When the radiation gas intensity has reached its peak values, the gas releases part of its energy into `photon wedges', similar to Cherenkov radiation. The results should be of importance for the present generation of intense lasers and for the understanding of localized gamma ray bursts in astrophysical environments. They could furthermore test the predictions of QED, and give means to create ultra-intense photonic pulses.Comment: 4 pages, 1 figur

    Wireless Network-Coded Accumulate-Compute and Forward Two-Way Relaying

    Full text link
    The design of modulation schemes for the physical layer network-coded two way wireless relaying scenario is considered. It was observed by Koike-Akino et al. for the two way relaying scenario, that adaptively changing the network coding map used at the relay according to the channel conditions greatly reduces the impact of multiple access interference which occurs at the relay during the MA Phase and all these network coding maps should satisfy a requirement called exclusive law. We extend this approach to an Accumulate-Compute and Forward protocol which employs two phases: Multiple Access (MA) phase consisting of two channel uses with independent messages in each channel use, and Broadcast (BC) phase having one channel use. Assuming that the two users transmit points from the same 4-PSK constellation, every such network coding map that satisfies the exclusive law can be represented by a Latin Square with side 16, and conversely, this relationship can be used to get the network coding maps satisfying the exclusive law. Two methods of obtaining this network coding map to be used at the relay are discussed. Using the structural properties of the Latin Squares for a given set of parameters, the problem of finding all the required maps is reduced to finding a small set of maps. Having obtained all the Latin Squares, the set of all possible channel realizations is quantized, depending on which one of the Latin Squares obtained optimizes the performance. The quantization thus obtained, is shown to be the same as the one obtained in [7] for the 2-stage bidirectional relaying.Comment: 17 figure
    corecore