191 research outputs found
Can Machines Think in Radio Language?
People can think in auditory, visual and tactile forms of language, so can
machines principally. But is it possible for them to think in radio language?
According to a first principle presented for general intelligence, i.e. the
principle of language's relativity, the answer may give an exceptional solution
for robot astronauts to talk with each other in space exploration.Comment: 4 pages, 1 figur
Efficient evolutionary optimization using individual-based evolution control and neural networks: A comparative study.
Adaptive modelling strategy for continuous multi-objective optimization
The Pareto optimal set of a continuous multi-objective optimization problem is a piecewise continuous manifold under some mild conditions. We have recently developed several multi-objective evolutionary algorithms based on this property. However, the modelling methods used in these algorithms are rather costly. In this paper, a cheap and effective modelling strategy is proposed for building the probabilistic models of promising solutions. A new criterion is proposed for measuring the convergence of the algorithm. The locality degree of each local model is adjusted according to the proposed convergence criterion. Experimental results show that the algorithm with the proposed strategy is very promising. © 2007 IEEE
Global multiobjective optimization via estimation of distribution algorithm with biased initialization and crossover
Solving Incremental Optimization Problems via Cooperative Coevolution
Engineering designs can involve multiple stages, where at each stage, the design models are incrementally modified and optimized. In contrast to traditional dynamic optimization problems where the changes are caused by some objective factors, the changes in such incremental optimization problems are usually caused by the modifications made by the decision makers during the design process. While existing work in the literature is mainly focused on traditional dynamic optimization, little research has been dedicated to solving such incremental optimization problems. In this work, we study how to adopt cooperative coevolution to efficiently solve a specific type of incremental optimization problems, namely, those with increasing decision variables. First, we present a benchmark function generator on the basis of some basic formulations of incremental optimization problems with increasing decision variables and exploitable modular structure. Then, we propose a contribution based cooperative coevolutionary framework coupled with an incremental grouping method for dealing with them. On one hand, the benchmark function generator is capable of generating various benchmark functions with various characteristics. On the other hand, the proposed framework is promising in solving such problems in terms of both optimization accuracy and computational efficiency. In addition, the proposed method is further assessed using a real-world application, i.e., the design optimization of a stepped cantilever beam
Redundancy creates opportunity in developmental representations
This paper investigates the influence of redundancy on the evolutionary performance of a gene regulatory network governing a cellular growth process. Redundancy is believed to play a key role in robustness and evolvability of biological systems. We use a cellular model controlled by a gene regulatory network to evolve elongated morphologies. We show that removing the redundancy in the genome during the evolution decreases the performance of the evolution strategy. A comparing run with few parameters and therefore no redundancy performs worst, which supports the hypothesis that redundancy improves evolvability. © 2011 IEEE
- …
