6 research outputs found

    Pre-activated antiviral innate immunity in the upper airways controls early SARS-CoV-2 infection in children

    Get PDF
    Children have reduced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection rates and a substantially lower risk for developing severe coronavirus disease 2019 compared with adults. However, the molecular mechanisms underlying protection in younger age groups remain unknown. Here we characterize the single-cell transcriptional landscape in the upper airways of SARS-CoV-2-negative (n = 18) and age-matched SARS-CoV-2-positive (n = 24) children and corresponding samples from adults (n = 44), covering an age range of 4 weeks to 77 years. Children displayed higher basal expression of relevant pattern recognition receptors such as MDA5 (IFIH1) and RIG-I (DDX58) in upper airway epithelial cells, macrophages and dendritic cells, resulting in stronger innate antiviral responses upon SARS-CoV-2 infection than in adults. We further detected distinct immune cell subpopulations including KLRC1 (NKG2A)+ cytotoxic T cells and a CD8+ T cell population with a memory phenotype occurring predominantly in children. Our study provides evidence that the airway immune cells of children are primed for virus sensing, resulting in a stronger early innate antiviral response to SARS-CoV-2 infection than in adults

    Correlation of SHOX2 Gene Amplification and DNA Methylation in Lung Cancer Tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>DNA methylation in the <it>SHOX2 </it>locus was previously used to reliably detect lung cancer in a group of critical controls, including 'cytologically negative' samples with no visible tumor cell content, at a high specificity based on the analysis of bronchial lavage samples. This study aimed to investigate, if the methylation correlates with <it>SHOX2 </it>gene expression and/or copy number alterations. An amplification of the <it>SHOX2 </it>gene locus together with the observed tumor-specific hypermethylation might explain the good performance of this marker in bronchial lavage samples.</p> <p>Methods</p> <p><it>SHOX2 </it>expression, gene copy number and DNA methylation were determined in lung tumor tissues and matched morphologically normal adjacent tissues (NAT) from 55 lung cancer patients. Quantitative HeavyMethyl (HM) real-time PCR was used to detect <it>SHOX2 </it>DNA methylation levels. <it>SHOX2 </it>expression was assayed with quantitative real-time PCR, and copy numbers alterations were measured with conventional real-time PCR and array CGH.</p> <p>Results</p> <p>A hypermethylation of the <it>SHOX2 </it>locus in tumor tissue as compared to the matched NAT from the same patient was detected in 96% of tumors from a group of 55 lung cancer patients. This correlated highly significantly with the frequent occurrence of copy number amplification (p < 0.0001), while the expression of the <it>SHOX2 </it>gene showed no difference.</p> <p>Conclusions</p> <p>Frequent gene amplification correlated with hypermethylation of the <it>SHOX2 </it>gene locus. This concerted effect qualifies <it>SHOX2 </it>DNA methylation as a biomarker for lung cancer diagnosis, especially when sensitive detection is needed, i.e. in bronchial lavage or blood samples.</p

    Sustainability in marketing: a systematic review unifying 20 years of theoretical and substantive contributions (1997–2016)

    No full text
    corecore