661 research outputs found

    Absolute spectrophotometry in M31 and M32

    Get PDF
    For a number of places in the bulge of M31 and for two places in M32 photometric scans from 3300 A to 10,600 A have been obtained with the multichannel spectrometer on the 5-meter Hale telescope. The scans show that in both objects the color temperature (particularly shortwards of 5000 A) decreases towards the center and that the strength of the CN bands increases towards the center in both objects in agreement with earlier observations. The new data can all be interpreted in terms of an increase of heavy element abundance towards the center in both objects by a factor probably less than 2 and by an excess of heavy elements in M31 compared to M32 by a factor probably greater than 2, in qualitative agreement with earlier conclusions

    Dynamics of the Fisher Information Metric

    Get PDF
    We present a method to generate probability distributions that correspond to metrics obeying partial differential equations generated by extremizing a functional J[gμν(θi)]J[g^{\mu\nu}(\theta^i)], where gμν(θi)g^{\mu\nu}(\theta^i) is the Fisher metric. We postulate that this functional of the dynamical variable gμν(θi)g^{\mu\nu}(\theta^i) is stationary with respect to small variations of these variables. Our approach enables a dynamical approach to Fisher information metric. It allows to impose symmetries on a statistical system in a systematic way. This work is mainly motivated by the entropy approach to nonmonotonic reasoning.Comment: 11 page

    Does gravity prefer the Poincare dodecahedral space?

    Full text link
    The missing fluctuations problem in cosmic microwave background observations is naturally explained by well-proportioned small universe models. Among the well-proportioned models, the Poincare dodecahedral space is empirically favoured. Does gravity favour this space? The residual gravity effect is the residual acceleration induced by weak limit gravity from multiple topological images of a massive object on a nearby negligible mass test object. At the present epoch, the residual gravity effect is about a million times weaker in three of the well-proportioned spaces than in ill-proportioned spaces. However, in the Poincare space, the effect is 10,000 times weaker still, i.e. the Poincare space is about 10^{10} times "better balanced" than ill-proportioned spaces. Both observations and weak limit dynamics select the Poincare space to be special.Comment: 6 pages, Honorable Mention in 2009 Gravity Research Foundation essay competitio

    Necessary and sufficient condition for hydrostatic equilibrium in general relativity

    Full text link
    We present explicit examples to show that the `compatibility criterion' is capable of providing a {\em necessary} and {\em sufficient} condition for any regular configuration to be compatible with the state of hydrostatic equilibrium. This conclusion is drawn on the basis of the finding that the MRM-R relation gives the necessary and sufficient condition for dynamical stability of equilibrium configurations only when the compatibility criterion for these configurations is appropriately satisfied. In this regard, we construct an appropriate sequence composed of core-envelope models on the basis of compatibility criterion, such that each member of this sequence satisfies the extreme case of causality condition v=c=1v = c = 1 at the centre. The maximum stable value of u0.3389u \simeq 0.3389 (which occurs for the model corresponding to the maximum value of mass in the mass-radius relation) and the corresponding central value of the local adiabatic index, (Γ1)02.5911(\Gamma_1)_0 \simeq 2.5911, of this model are found fully consistent with those of the corresponding {\em absolute} values, umax0.3406u_{\rm max} \leq 0.3406, and (Γ1)02.5946(\Gamma_1)_0 \leq 2.5946, which impose strong constraints on these parameters of such models. In addition to this example, we also study dynamical stability of pure adiabatic polytropic configurations on the basis of variational method for the choice of the `trial function', ξ=reν/4\xi =re^{\nu/4}, as well as the mass-central density relation, since the compatibility criterion is appropriately satisfied for these models. The results of this example provide additional proof in favour of the statement regarding compatibility criterion mentioned above.Comment: 31 pages (double-spaced) revtex style, 1 figure in `ps' forma

    A new two-sphere singularity in general relativity

    Get PDF
    The Florides solution, proposed as an alternative to the interior Schwarzschild solution, represents a static and spherically symmetric geometry with vanishing radial stresses. It is regular at the center, and is matched to an exterior Schwarzschild solution. The specific case of a constant energy density has been interpreted as the field inside an Einstein cluster. In this work, we are interested in analyzing the geometry throughout the permitted range of the radial coordinate without matching it to the Schwarzschild exterior spacetime at some constant radius hypersurface. We find an interesting picture, namely, the solution represents a three-sphere, whose equatorial two-sphere is singular, in the sense that the curvature invariants and the tangential pressure diverge. As far as we know, such singularities have not been discussed before. In the presence of a large negative cosmological constant (anti-de Sitter) the singularity is removed.Comment: 17 pages, 3 figure

    Population III star formation in a Lambda CDM universe, I: The effect of formation redshift and environment on protostellar accretion rate

    Get PDF
    (abridged) We perform 12 extremely high resolution adaptive mesh refinement cosmological hydrodynamic simulations of Population III star formation in a Lambda CDM universe, varying the box size and large-scale structure, to understand systematic effects in the formation of primordial protostellar cores. We find results that are qualitatively similar to those observed previously. We observe that the threshold halo mass for formation of a Population III protostar does not evolve significantly with time in the redshift range studied (33 > z > 19) but exhibits substantial scatter due to different halo assembly histories: Halos which assembled more slowly develop cooling cores at lower mass than those that assemble more rapidly, in agreement with Yoshida et al. (2003). We do, however, observe significant evolution in the accretion rates of Population III protostars with redshift, with objects that form later having higher maximum accretion rates, with a variation of two orders of magnitude (10^-4 - 10^-2 Msolar/year). This can be explained by considering the evolving virial properties of the halos with redshift and the physics of molecular hydrogen formation at low densities. Our result implies that the mass distribution of Population III stars inferred from their accretion rates may be broader than previously thought, and may evolve with redshift. Finally, we observe that our collapsing protostellar cloud cores do not fragment, consistent with previous results, which suggests that Population III stars which form in halos of mass 10^5 - 10^6 Msun always form in isolation.Comment: Accepted by The Astrophysical Journal. Some minor changes. 65 pages, 3 tables, 21 figures (3 color). To appear in January 1, 2007 issu

    Nonadiabatic charged spherical evolution in the postquasistatic approximation

    Full text link
    We apply the postquasistatic approximation, an iterative method for the evolution of self-gravitating spheres of matter, to study the evolution of dissipative and electrically charged distributions in General Relativity. We evolve nonadiabatic distributions assuming an equation of state that accounts for the anisotropy induced by the electric charge. Dissipation is described by streaming out or diffusion approximations. We match the interior solution, in noncomoving coordinates, with the Vaidya-Reissner-Nordstr\"om exterior solution. Two models are considered: i) a Schwarzschild-like shell in the diffusion limit; ii) a Schwarzschild-like interior in the free streaming limit. These toy models tell us something about the nature of the dissipative and electrically charged collapse. Diffusion stabilizes the gravitational collapse producing a spherical shell whose contraction is halted in a short characteristic hydrodynamic time. The streaming out radiation provides a more efficient mechanism for emission of energy, redistributing the electric charge on the whole sphere, while the distribution collapses indefinitely with a longer hydrodynamic time scale.Comment: 11 pages, 16 Figures. Accepted for publication in Phys Rev

    Exact relativistic stellar models with liquid surface. I. Generalizing Buchdahl's n=1n=1 polytrope

    Full text link
    A family of exact relativistic stellar models is described. The family generalizes Buchdahl's n=1 polytropic solution. The matter content is a perfect fluid and, excluding Buchdahl's original model, it behaves as a liquid at low pressures in the sense that the energy density is non-zero in the zero pressure limit. The equation of state has two free parameters, a scaling and a stiffness parameter. Depending on the value of the stiffness parameter the fluid behaviour can be divided in four different types. Physical quantities such as masses, radii and surface redshifts as well as density and pressure profiles are calculated and displayed graphically. Leaving the details to a later publication, it is noted that one of the equation of state types can quite accurately approximate the equation of state of real cold matter in the outer regions of neutron stars. Finally, it is observed that the given equation of state does not admit models with a conical singularity at the center.Comment: 19 pages, 12 figures (16 eps files), LaTeX2e with the standard packages amssymb, amsmath, graphicx, subfigure, psfra

    The optimal phase of the generalised Poincare dodecahedral space hypothesis implied by the spatial cross-correlation function of the WMAP sky maps

    Full text link
    Several studies have proposed that the shape of the Universe may be a Poincare dodecahedral space (PDS) rather than an infinite, simply connected, flat space. Both models assume a close to flat FLRW metric of about 30% matter density. We study two predictions of the PDS model. (i) For the correct model, the spatial two-point cross-correlation function, \ximc, of temperature fluctuations in the covering space, where the two points in any pair are on different copies of the surface of last scattering (SLS), should be of a similar order of magnitude to the auto-correlation function, \xisc, on a single copy of the SLS. (ii) The optimal orientation and identified circle radius for a "generalised" PDS model of arbitrary twist ϕ\phi, found by maximising \ximc relative to \xisc in the WMAP maps, should yield ϕ{±36deg}\phi \in \{\pm 36\deg\}. We optimise the cross-correlation at scales < 4.0 h^-1 Gpc using a Markov chain Monte Carlo (MCMC) method over orientation, circle size and ϕ\phi. Both predictions were satisfied: (i) an optimal "generalised" PDS solution was found, with a strong cross-correlation between points which would be distant and only weakly correlated according to the simply connected hypothesis, for two different foreground-reduced versions of the WMAP 3-year all-sky map, both with and without the kp2 Galaxy mask: the face centres are (l,b)i=1,6(184d,62d),(305d,44d),(46d,49d),(117d,20d),(176d,4d),(240d,13d)towithin 2d,andtheirantipodes;(ii)thissolutionhastwistϕ=(+39±2.5)d,inagreementwiththePDSmodel.Thechanceofthisoccurringinthesimplyconnectedmodel,assumingauniformdistribution(l,b)_{i=1,6}\approx (184d, 62d), (305d, 44d), (46d, 49d), (117d, 20d), (176d, -4d), (240d, 13d) to within ~2d, and their antipodes; (ii) this solution has twist \phi= (+39 \pm 2.5)d, in agreement with the PDS model. The chance of this occurring in the simply connected model, assuming a uniform distribution \phi \in [0,2\pi]$, is about 6-9%.Comment: 20 pages, 22 figures, accepted in Astronomy & Astrophysics, software available at http://adjani.astro.umk.pl/GPLdownload/dodec/ and MCMCs at http://adjani.astro.umk.pl/GPLdownload/MCM

    Dynamics of dissipative gravitational collapse

    Full text link
    The Misner and Sharp approach to the study of gravitational collapse is extended to the dissipative case in, both, the streaming out and the diffusion approximations. The role of different terms in the dynamical equation are analyzed in detail. The dynamical equation is then coupled to a causal transport equation in the context of Israel--Stewart theory. The decreasing of the inertial mass density of the fluid, by a factor which depends on its internal thermodynamics state, is reobtained, at any time scale. In accordance with the equivalence principle, the same decreasing factor is obtained for the gravitational force term. Prospective applications of this result to some astrophysical scenarios are discussed.Comment: Some misprints in eqs.(38) and (39) correcte
    corecore