88 research outputs found

    Effect of transport and rest stop duration on the welfare of conditioned cattle transported by road

    Get PDF
    The effects of providing rest on physiological and behavioural indicators of welfare of cattle being transported by road has not been well studied in North America. New revisions to Canada’s Health of Animals Regulations Part XII: Transportation of Animals indicate un-weaned and weaned calves can be transported a maximum of 12 and 36 h, respectively, before an 8 h rest is required. Therefore, the aim of this study was to assess the effects of rest duration, after 12 and 36 h of transport, on physiological and behavioural indicators of welfare in 7–8 mo-old beef calves. Three hundred and twenty conditioned calves (258 ± 23.9 kg BW) were randomly assigned to a 2 × 4 factorial design where the main factors included transport duration: 12 h (12; n = 160) and 36 h (36; n = 160) and rest stop duration: 0 h (R0; n = 80), 4 h (R4; n = 80), 8 h (R8; n = 80) and 12 h (R12; n = 80). After the resting period, animals were transported for an additional 4 h. Blood and hair samples were taken from 12 animals per treatment prior to and after the first and the 4 h transport; and then 7 h, 2 d and 28 d after the 4 h transport. The concentrations of haptoglobin, creatine kinase, non-esterified fatty acids (NEFA), lactate, and serum and hair cortisol were determined. Standing and lying behaviour was assessed for 14 d after transport, while feeding behaviour of calves in one pen per treatment were assessed for 28 d after transportation using an electronic feed bunk monitoring system. Body weight (BW), average daily gain (ADG) and shrink (%) was assessed for all calves. The data was modeled using generalized linear mixed methods (SAS PROC GLIMMIX), where transport and time (nested in rest) were considered fixed effects and animal and pen were considered random effects. Statistically significant (p < 0.05) effects of transport were observed on BW and shrink, where 36 h-transported calves had lower (p < 0.01) BW and greater (p < 0.01) shrink than 12 h-transported calves. A transport × time (nested in rest) interaction (p < 0.01) was observed for lying percentage where, 36-R8 calves had greater (p < 0.01) lying percentage than 12-R8 calves on d 1 after transportation. The area under the curve (AUC) for NEFA was greater (p < 0.01) for 36-R0 calves than 12-R0, 36-R4, and 36-R8 calves, and greater (p < 0.01) in 36-R12 calves than 12-R12 calves. Haptoglobin AUC was greater (p = 0.05) in 36-R12 than 12-R12 calves. Overall, physiological indicators of reduced welfare were greater in calves transported for 36 than 12 h, while no clear differences were observed between rest stop groups with the exception of NEFA. Based on these results, conditioned calves benefit from shorter transport durations but there was no clear evidence that calves rested 4, 8, and 12 h following transportation experienced reduced transport related stress compared to those that were not rested (0h).info:eu-repo/semantics/publishedVersio

    Effect of rest, post-rest transport duration, and conditioning on performance, behavioural, and physiological welfare indicators of beef calves

    Get PDF
    The aim of this study was to assess the effects of conditioning, rest, and post-rest transport duration on welfare indicators of 6–7 mo old beef calves following a 20-h transport. Three hundred and twenty-eight weaned calves (237 ± 29.7 kg of BW) were randomly assigned to a 2 × 2 × 2 nested factorial design: conditioning, conditioned (C) or non-conditioned (N); rest, 0 (R0) or 8 (R8) h, and post-rest transport, 4 (T4) or 15 (T15) h. Calves were sampled before (LO1) and after (UN1) the initial 20-h journey, before (LO2) and after (UN2) the additional 4 or 15-h journey, and at 1, 2, 3, 5, 14, and 28 d after UN2. Data was analyzed using the GLIMMIX procedure of SAS. Fixed effects included conditioning, transport, and time nested within rest period, while random effects included animal and pen. Greater shrink (p < 0.01) was observed in C than N calves after the initial 20-h transport. During the first week after transportation, the mean ADG of N calves was greater than C calves (p < 0.01). From d 14 to d 28, however, the mean ADG of C calves was greater than N calves (p < 0.01). Flight speed, cortisol and L-lactate concentrations were greater (p ≤ 0.05) in C than N calves between LO1 and d 5, while greater (p ≤ 0.02) non-esterified fatty acids, creatine kinase, serum amyloid-A, and haptoglobin concentrations were observed in N than C calves between LO1 and d 3. The R8-T4 calves had greater (p < 0.01) ADG than R8-T15 calves between LO1 and d 5. The R0-T4 calves had greater L-lactate concentrations than R0-T15 and R8-T4 calves (both p = 0.02) on d 1. The R0 calves had greater (p < 0.01) ADG than R8 calves between 14 and 28 d. This study suggests that C calves are better fit for transport than N calves as evidenced by behavioural and physiological parameters. Fewer and inconsistent differences were observed for rest and post-rest transport treatments.info:eu-repo/semantics/publishedVersio

    Condensation and Clustering in the Driven Pair Exclusion Process

    Full text link
    We investigate particle condensation in a driven pair exclusion process on one- and two- dimensional lattices under the periodic boundary condition. The model describes a biased hopping of particles subject to a pair exclusion constraint that each particle cannot stay at a same site with its pre-assigned partner. The pair exclusion causes a mesoscopic condensation characterized by the scaling of the condensate size mconNβm_{\rm con}\sim N^\beta and the number of condensates NconNαN_{\rm con}\sim N^\alpha with the total number of sites NN. Those condensates are distributed randomly without hopping bias. We find that the hopping bias generates a spatial correlation among condensates so that a cluster of condensates appears. Especially, the cluster has an anisotropic shape in the two-dimensional system. The mesoscopic condensation and the clustering are studied by means of numerical simulations.Comment: 4 pages, 5 figure

    Effects of confinement and surface enhancement on superconductivity

    Full text link
    Within the Ginzburg-Landau approach a theoretical study is performed of the effects of confinement on the transition to superconductivity for type-I and type-II materials with surface enhancement. The superconducting order parameter is characterized by a negative surface extrapolation length bb. This leads to an increase of the critical field Hc3H_{c3} and to a surface critical temperature in zero field, TcsT_{cs}, which exceeds the bulk TcT_c. When the sample is {\em mesoscopic} of linear size LL the surface induces superconductivity in the interior for TTcsT T_{cs}. In analogy with adsorbed fluids, superconductivity in thin films of type-I materials is akin to {\em capillary condensation} and competes with the interface delocalization or "wetting" transition. The finite-size scaling properties of capillary condensation in superconductors are scrutinized in the limit that the ratio of magnetic penetration depth to superconducting coherence length, κλ/ξ\kappa \equiv \lambda/\xi , goes to zero, using analytic calculations. While standard finite-size scaling holds for the transition in non-zero magnetic field HH, an anomalous critical-point shift is found for H=0. The increase of TcT_c for H=0 is calculated for mesoscopic films, cylindrical wires, and spherical grains of type-I and type-II materials. Surface curvature is shown to induce a significant increase of TcT_c, characterized by a shift Tc(R)Tc()T_c(R)-T_c(\infty) inversely proportional to the radius RR.Comment: 37 pages, 5 figures, accepted for PR

    An education and training programme for livestock transporters in Canada

    No full text
    The transport of live animals is known to be stressful and therefore can have a direct impact on animal welfare and on food safety and quality. The livestock production and transport industries are increasingly interested in improving animal well-being. This can be accomplished through the use of careful animal handling and good driving practices before, during and after transport. The recently developed Certified Livestock Transporter (CLT) training programme in Canada is aimed at ensuring livestock transporters are educated and have access to up-to-date information regarding the humane handling of animals. An overview of the CLT includes examples from the main training manual and species-specific modules. The relationship between education and improved animal welfare is discussed and possible future directions proposed. The examples provided may be modified by other users to develop new education and training programmes relevant to their geographic locations and livestock industries

    Characteristics of Loads of Cattle Stopping for Feed, Water and Rest during Long-Distance Transport in Canada

    No full text
    This study is the first comprehensive examination of long-haul cattle being transported across Canada and off-loaded for feed, water and rest. A total of 129 truckloads were observed at one of two commercial rest stations near Thunder Bay, Ontario. Data collected included information regarding the truck driver, the trailer, the trip, the animals and animal handling. The majority of the loads stopping were feeder calves (60.94%) while 21.09% were weaned calves, and the remaining 14.84% were market weight cattle. The truck loads surveyed were in transit for, on average, 28.2 ± 5.0 hours before stopping and cattle were rested for an average of 11.2 ± 2.8 hours. These data suggest that loads stopping at the rest station were adhering to the regulations stated in the Health of Animals Act, which outline a maximum of 48 hours in transit before a mandatory stop of at least 5 hours for feed, water and rest. There was a large amount of variability around how well recommendations, such as stocking density were followed. Further research is required to assess how well cattle are coping with long-distance transport under current regulations and industry practices

    Effect of transport and rest stop duration on the welfare of conditioned cattle transported by road.

    No full text
    The effects of providing rest on physiological and behavioural indicators of welfare of cattle being transported by road has not been well studied in North America. New revisions to Canada's Health of Animals Regulations Part XII: Transportation of Animals indicate un-weaned and weaned calves can be transported a maximum of 12 and 36 h, respectively, before an 8 h rest is required. Therefore, the aim of this study was to assess the effects of rest duration, after 12 and 36 h of transport, on physiological and behavioural indicators of welfare in 7-8 mo-old beef calves. Three hundred and twenty conditioned calves (258 ± 23.9 kg BW) were randomly assigned to a 2 × 4 factorial design where the main factors included transport duration: 12 h (12; n = 160) and 36 h (36; n = 160) and rest stop duration: 0 h (R0; n = 80), 4 h (R4; n = 80), 8 h (R8; n = 80) and 12 h (R12; n = 80). After the resting period, animals were transported for an additional 4 h. Blood and hair samples were taken from 12 animals per treatment prior to and after the first and the 4 h transport; and then 7 h, 2 d and 28 d after the 4 h transport. The concentrations of haptoglobin, creatine kinase, non-esterified fatty acids (NEFA), lactate, and serum and hair cortisol were determined. Standing and lying behaviour was assessed for 14 d after transport, while feeding behaviour of calves in one pen per treatment were assessed for 28 d after transportation using an electronic feed bunk monitoring system. Body weight (BW), average daily gain (ADG) and shrink (%) was assessed for all calves. The data was modeled using generalized linear mixed methods (SAS PROC GLIMMIX), where transport and time (nested in rest) were considered fixed effects and animal and pen were considered random effects. Statistically significant (p < 0.05) effects of transport were observed on BW and shrink, where 36 h-transported calves had lower (p < 0.01) BW and greater (p < 0.01) shrink than 12 h-transported calves. A transport × time (nested in rest) interaction (p < 0.01) was observed for lying percentage where, 36-R8 calves had greater (p < 0.01) lying percentage than 12-R8 calves on d 1 after transportation. The area under the curve (AUC) for NEFA was greater (p < 0.01) for 36-R0 calves than 12-R0, 36-R4, and 36-R8 calves, and greater (p < 0.01) in 36-R12 calves than 12-R12 calves. Haptoglobin AUC was greater (p = 0.05) in 36-R12 than 12-R12 calves. Overall, physiological indicators of reduced welfare were greater in calves transported for 36 than 12 h, while no clear differences were observed between rest stop groups with the exception of NEFA. Based on these results, conditioned calves benefit from shorter transport durations but there was no clear evidence that calves rested 4, 8, and 12 h following transportation experienced reduced transport related stress compared to those that were not rested (0h)
    corecore