2,315 research outputs found
On the Parity Degeneracy of Baryons
The gross features of the observed baryon excitation spectrum below 2 GeV are
well explained if the spectrum generating algebra of its intrinsic orbital
angular momentum states is o(4)*su(2)_I. The spins of the resonances are
obtained through the coupling of a Lorentz bi-spinor (1/2,0)+ (0,1/ 2) to a
multiplet of the type (j,j) in its O(4)/O(3) reduction. The parities of the
resonances follow from those of the O(3) members of the (j,j) multiplets. In
this way relativistic SL(2,C) representations are constructed. For example, the
first S11, P11, and D13 states with masses around 1500 MeV fit into the (1/2,
1/2)* [(1/2,0)+(0,1/2)] representation. The observed parities of the resonances
correspond to natural parities of the (1/2,1/2) states. The second P11, S11,
D13- together with the first P13, F15, D15, and (a predicted) F17 -resonances,
centered around 1700 MeV, are organized into the (3/2,3/2)*[(1/2,0)+(0,1/2)]
representation. I argue that the members of the (3/2,3/2) multiplet carry
unnatural parities and that in this region chiral symmetry is restored. In the
N(939)- N(1650) transition the chiral symmetry mode is changed, and therefore,
a chiral phase transition is predicted to take place.Comment: 9 pages, LaTex, 1 figure; published in Mod.Phys.Lett. A12 (1997)
2373; minor misprints corrected, no statement change
Looking beyond the Thermal Horizon: Hidden Symmetries in Chiral Models
In thermal states of chiral theories, as recently investigated by H.-J.
Borchers and J. Yngvason, there exists a rich group of hidden symmetries. Here
we show that this leads to a radical converse of of the Hawking-Unruh
observation in the following sense. The algebraic commutant of the algebra
associated with a (heat bath) thermal chiral system can be used to reprocess
the thermal system into a ground state system on a larger algebra with a larger
localization space-time. This happens in such a way that the original system
appears as a kind of generalized Unruh restriction of the ground state sytem
and the thermal commutant as being transmutated into newly created ``virgin
space-time region'' behind a horizon. The related concepts of a ``chiral
conformal core'' and the possibility of a ``blow-up'' of the latter suggest
interesting ideas on localization of degrees of freedom with possible
repercussion on how to define quantum entropy of localized matter content in
Local Quantum Physics.Comment: 17 pages, tcilatex, still more typos removed and one reference
correcte
Bondi-Metzner-Sachs symmetry, holography on null-surfaces and area proportionality of "light-slice" entropy
It is shown that certain kinds of behavior, which hitherto were expected to
be characteristic for classical gravity and quantum field theory in curved
spacetime, as the infinite dimensional Bondi-Metzner-Sachs symmetry, holography
on event horizons and an area proportionality of entropy, have in fact an
unnoticed presence in Minkowski QFT. This casts new light on the fundamental
question whether the volume propotionality of heat bath entropy and the
(logarithmically corrected) dimensionless area law obeyed by
localization-induced thermal behavior are different geometric parametrizations
which share a common primordeal algebraic origin. Strong arguments are
presented that these two different thermal manifestations can be directly
related, this is in fact the main aim of this paper. It will be demonstrated
that QFT beyond the Lagrangian quantization setting receives crucial new
impulses from holography onto horizons. The present paper is part of a project
aimed at elucidating the enormous physical range of "modular localization". The
latter does not only extend from standard Hamitonian heat bath thermal states
to thermal aspects of causal- or event- horizons addressed in this paper. It
also includes the recent understanding of the crossing property of formfactors
whose intriguing similarity with thermal properties was, although sometimes
noticed, only sufficiently understood in the modular llocalization setting.Comment: 42 pages, changes, addition of new results and new references, in
this form the paper will appear in Foundations of Physic
The Pivotal Role of Causality in Local Quantum Physics
In this article an attempt is made to present very recent conceptual and
computational developments in QFT as new manifestations of old and well
establihed physical principles. The vehicle for converting the
quantum-algebraic aspects of local quantum physics into more classical
geometric structures is the modular theory of Tomita. As the above named
laureate to whom I have dedicated has shown together with his collaborator for
the first time in sufficient generality, its use in physics goes through
Einstein causality. This line of research recently gained momentum when it was
realized that it is not only of structural and conceptual innovative power (see
section 4), but also promises to be a new computational road into
nonperturbative QFT (section 5) which, picturesquely speaking, enters the
subject on the extreme opposite (noncommutative) side.Comment: This is a updated version which has been submitted to Journal of
Physics A, tcilatex 62 pages. Adress: Institut fuer Theoretische Physik
FU-Berlin, Arnimallee 14, 14195 Berlin presently CBPF, Rua Dr. Xavier Sigaud
150, 22290-180 Rio de Janeiro, Brazi
Kinetic distance and kinetic maps from molecular dynamics simulation
Characterizing macromolecular kinetics from molecular dynamics (MD)
simulations requires a distance metric that can distinguish
slowly-interconverting states. Here we build upon diffusion map theory and
define a kinetic distance for irreducible Markov processes that quantifies how
slowly molecular conformations interconvert. The kinetic distance can be
computed given a model that approximates the eigenvalues and eigenvectors
(reaction coordinates) of the MD Markov operator. Here we employ the
time-lagged independent component analysis (TICA). The TICA components can be
scaled to provide a kinetic map in which the Euclidean distance corresponds to
the kinetic distance. As a result, the question of how many TICA dimensions
should be kept in a dimensionality reduction approach becomes obsolete, and one
parameter less needs to be specified in the kinetic model construction. We
demonstrate the approach using TICA and Markov state model (MSM) analyses for
illustrative models, protein conformation dynamics in bovine pancreatic trypsin
inhibitor and protein-inhibitor association in trypsin and benzamidine
Generalized Particle Statistics in Two-Dimensions: Examples from the Theory of Free Massive Dirac Field
In the framework of algebraic quantum field theory we analyze the anomalous
statistics exhibited by a class of automorphisms of the observable algebra of
the two-dimensional free massive Dirac field, constructed by fermionic gauge
group methods. The violation of Haag duality, the topological peculiarity of a
two-dimensional space-time and the fact that unitary implementers do not lie in
the global field algebra account for strange behaviour of statistics, which is
no longer an intrinsic property of sectors. Since automorphisms are not inner,
we exploit asymptotic abelianness of intertwiners in order to construct a
braiding for a suitable -tensor subcategory of End(). We
define two inequivalent classes of path connected bi-asymptopias, selecting
only those sets of nets which yield a true generalized statistics operator.Comment: 24 page
- …
