research

On the Parity Degeneracy of Baryons

Abstract

The gross features of the observed baryon excitation spectrum below 2 GeV are well explained if the spectrum generating algebra of its intrinsic orbital angular momentum states is o(4)*su(2)_I. The spins of the resonances are obtained through the coupling of a Lorentz bi-spinor (1/2,0)+ (0,1/ 2) to a multiplet of the type (j,j) in its O(4)/O(3) reduction. The parities of the resonances follow from those of the O(3) members of the (j,j) multiplets. In this way relativistic SL(2,C) representations are constructed. For example, the first S11, P11, and D13 states with masses around 1500 MeV fit into the (1/2, 1/2)* [(1/2,0)+(0,1/2)] representation. The observed parities of the resonances correspond to natural parities of the (1/2,1/2) states. The second P11, S11, D13- together with the first P13, F15, D15, and (a predicted) F17 -resonances, centered around 1700 MeV, are organized into the (3/2,3/2)*[(1/2,0)+(0,1/2)] representation. I argue that the members of the (3/2,3/2) multiplet carry unnatural parities and that in this region chiral symmetry is restored. In the N(939)- N(1650) transition the chiral symmetry mode is changed, and therefore, a chiral phase transition is predicted to take place.Comment: 9 pages, LaTex, 1 figure; published in Mod.Phys.Lett. A12 (1997) 2373; minor misprints corrected, no statement change

    Similar works

    Available Versions

    Last time updated on 05/06/2019