1,957 research outputs found
Observation of Fano-Resonances in Single-Wall Carbon Nanotubes
We have explored the low-temperature linear and non-linear electrical
conductance of metallic carbon nanotubes (CNTs), which were grown by the
chemical-vapor deposition method. The high transparency of the contacts allows
to study these two-terminal devices in the high conductance regime. We observe
the expected four-fold shell pattern together with Kondo physics at
intermediate transparency {G\alt 2e^2/h} and a transition to the open regime
in which the maximum conductance is doubled and bound by . In
the high- regime, at the transition from a quantum dot to a weak link, the
CNT levels are strongly broadened. Nonetheless, sharp resonances appear
superimposed on the background which varies slowly with gate voltage. The
resonances are identified by their lineshape as Fano resonances. The origin of
Fano resonances is discussed along the modelling.Comment: pdf including figures, see:
http://www.unibas.ch/phys-meso/Research/Papers/2004/Fano-CVD-SWNT.pd
Positive Cross Correlations in a Normal-Conducting Fermionic Beam Splitter
We investigate a beam splitter experiment implemented in a normal conducting
fermionic electron gas in the quantum Hall regime. The cross-correlations
between the current fluctuations in the two exit leads of the three terminal
device are found to be negative, zero or even positive depending on the
scattering mechanism within the device. Reversal of the cross-correlations sign
occurs due to interaction between different edge-states and does not reflect
the statistics of the fermionic particles which `antibunch'.Comment: 4 pages, 4 figure
Competition between magnetic field dependent band structure and coherent backscattering in multiwall carbon nanotubes
Magnetotransport measurements in large diameter multiwall carbon nanotubes
(20-40 nm) demonstrate the competition of a magnetic-field dependent
bandstructure and Altshuler-Aronov-Spivak oscillations. By means of an
efficient capacitive coupling to a backgate electrode, the magnetoconductance
oscillations are explored as a function of Fermi level shift. Changing the
magnetic field orientation with respect to the tube axis and by ensemble
averaging, allows to identify the contributions of different Aharonov-Bohm
phases. The results are in qualitative agreement with numerical calculations of
the band structure and the conductance.Comment: 4 figures, 5 page
The Amplitude of Non-Equilibrium Quantum Interference in Metallic Mesoscopic Systems
We study the influence of a DC bias voltage V on quantum interference
corrections to the measured differential conductance in metallic mesoscopic
wires and rings. The amplitude of both universal conductance fluctuations (UCF)
and Aharonov-Bohm effect (ABE) is enhanced several times for voltages larger
than the Thouless energy. The enhancement persists even in the presence of
inelastic electron-electron scattering up to V ~ 1 mV. For larger voltages
electron-phonon collisions lead to the amplitude decaying as a power law for
the UCF and exponentially for the ABE. We obtain good agreement of the
experimental data with a model which takes into account the decrease of the
electron phase-coherence length due to electron-electron and electron-phonon
scattering.Comment: New title, refined analysis. 7 pages, 3 figures, to be published in
Europhysics Letter
Multi-shell gold nanowires under compression
Deformation properties of multi-wall gold nanowires under compressive loading
are studied. Nanowires are simulated using a realistic many-body potential.
Simulations start from cylindrical fcc(111) structures at T=0 K. After
annealing cycles axial compression is applied on multi-shell nanowires for a
number of radii and lengths at T=300 K. Several types of deformation are found,
such as large buckling distortions and progressive crushing. Compressed
nanowires are found to recover their initial lengths and radii even after
severe structural deformations. However, in contrast to carbon nanotubes
irreversible local atomic rearrangements occur even under small compressions.Comment: 1 gif figure, 5 ps figure
Controlled formation of metallic nanowires via Au nanoparticle ac trapping
Applying ac voltages, we trapped gold nanoparticles between microfabricated
electrodes under well-defined conditions. We demonstrate that the nanoparticles
can be controllably fused together to form homogeneous gold nanowires with
pre-defined diameters and conductance values. Whereas electromigration is known
to form a gap when a dc voltage is applied, this ac technique achieves the
opposite, thereby completing the toolkit for the fabrication of nanoscale
junctions.Comment: Nanotechnology 18, 235202 (2007
Superconductivity enhanced conductance fluctuations in few layer graphene nanoribbons
We investigate the mesoscopic disorder induced rms conductance variance
in a few layer graphene nanoribbon (FGNR) contacted by two
superconducting (S) Ti/Al contacts. By sweeping the back-gate voltage, we
observe pronounced conductance fluctuations superimposed on a linear background
of the two terminal conductance G. The linear gate-voltage induced response can
be modeled by a set of inter-layer and intra-layer capacitances.
depends on temperature T and source-drain voltage .
increases with decreasing T and . When lowering , a
pronounced cross-over at a voltage corresponding to the superconducting energy
gap is observed. For |V_{sd}|\ltequiv \Delta the fluctuations are
markedly enhanced. Expressed in the conductance variance of one
graphene-superconducutor (G-S) interface, values of 0.58 e^2/h are obtained at
the base temperature of 230 mK. The conductance variance in the sub-gap region
are larger by up to a factor of 1.4-1.8 compared to the normal state. The
observed strong enhancement is due to phase coherent charge transfer caused by
Andreev reflection at the nanoribbon-superconductor interface.Comment: 15 pages, 5 figure
Indikationsbereiche von MTA, eine Ăbersicht
Mineral trioxide aggregate (MTA) has been used in dentistry for the last five to eight years. Because of its high biocompatibility, its good sealing ability, and the fact that cemental tissues grow on this material, it has a relatively wide range of applications in endodontics. MTA may be used to cap exposed vital pulps, to seal open apices or perforations, or as a retro-filling material in apical surgery. These applications are presented in the current article, and discussed based on case reports
Bulk and boundary zero-bias anomaly in multi-wall carbon nanotubes
We compute the tunneling density of states of doped multi-wall nanotubes
including disorder and electron-electron interactions. A non-conventional
Coulomb blockade reflecting nonperturbative Altshuler-Aronov-Lee power-law
zero-bias anomalies is found, in accordance with recent experimental results.
The presence of a boundary implies a universal doubling of the boundary
exponent in the diffusive limit.Comment: 4 pages, to appear in PRL (revised version
Electron fractionalization induced dephasing in Luttinger liquids
Using the appropriate fractionalization mechanism, we correctly derive the
temperature (T) and interaction dependence of the electron lifetime in
Luttinger liquids. For strong enough interactions, we report that
, with being the standard Luttinger exponent; This
reinforces that electrons are {\it not} good quasiparticles. We immediately
emphasize that this is of importance for the detection of electronic
interferences in ballistic 1D rings and carbon nanotubes, inducing
``dephasing'' (strong reduction of Aharonov-Bohm oscillations).Comment: 5 pages, 1 figure (Final version for PRB Brief Report
- âŠ