25 research outputs found

    A Common Polymorphism in the Promoter Region of the TNFSF4 Gene Is Associated with Lower Allele-Specific Expression and Risk of Myocardial Infarction

    Get PDF
    BACKGROUND: The TNFSF4/TNFRSF4 system, along with several other receptor-ligand pairs, is involved in the recruitment and activation of T-cells and is therefore tentatively implicated in atherosclerosis and acute coronary syndromes. We have previously shown that genetic variants in TNFSF4 are associated with myocardial infarction (MI) in women. This prompted functional studies of TNFSF4 expression. METHODS AND RESULTS: Based on a screening of the TNFSF4 genomic region, a promoter polymorphism (rs45454293) and a haplotype were identified, conceivably involved in gene regulation. The rs45454293T-allele, in agreement with the linked rs3850641G-allele, proved to be associated with increased risk of MI in women. Haplotype-specific chromatin immunoprecipitation of activated polymerase II, as a measure of transcriptional activity in vivo, suggested that the haplotype including the rs45454293 and rs3850641 polymorphisms is functionally important, the rs45454293T- and rs3850641G-alleles being associated with lower transcriptional activity in cells heterozygous for both polymorphisms. The functional role of rs45454293 on transcriptional levels of TNFSF4 was clarified by luciferase reporter assays, where the rs45454293T-allele decreased gene expression when compared with the rs45454293C-allele, while the rs3850641 SNP did not have any effect on TNFSF4 promoter activity. Electromobility shift assay showed that the rs45454293 polymorphism, but not rs3850641, affects the binding of nuclear factors, thus suggesting that the lower transcriptional activity is attributed to binding of one or more transcriptional repressor(s) to the T-allele. CONCLUSIONS: Our data indicate that the TNFSF4 rs45454293T-allele is associated with lower TNFSF4 expression and increased risk of MI

    C-Peptide Increases Na,K-ATPase Expression via PKC- and MAP Kinase-Dependent Activation of Transcription Factor ZEB in Human Renal Tubular Cells

    Get PDF
    Replacement of proinsulin C-peptide in type 1 diabetes ameliorates nerve and kidney dysfunction, conditions which are associated with a decrease in Na,K-ATPase activity. We determined the molecular mechanism by which long term exposure to C-peptide stimulates Na,K-ATPase expression and activity in primary human renal tubular cells (HRTC) in control and hyperglycemic conditions.HRTC were cultured from the outer cortex obtained from patients undergoing elective nephrectomy. Ouabain-sensitive rubidium ((86)Rb(+)) uptake and Na,K-ATPase activity were determined. Abundance of Na,K-ATPase was determined by Western blotting in intact cells or isolated basolateral membranes (BLM). DNA binding activity was determined by electrical mobility shift assay (EMSA). Culturing of HRTCs for 5 days with 1 nM, but not 10 nM of human C-peptide leads to increase in Na,K-ATPase α(1)-subunit protein expression, accompanied with increase in (86)Rb(+) uptake, both in normal- and hyperglycemic conditions. Na,K-ATPase α(1)-subunit expression and Na,K-ATPase activity were reduced in BLM isolated from cells cultured in presence of high glucose. Exposure to1 nM, but not 10 nM of C-peptide increased PKCε phosphorylation as well as phosphorylation and abundance of nuclear ERK1/2 regardless of glucose concentration. Exposure to 1 nM of C-peptide increased DNA binding activity of transcription factor ZEB (AREB6), concomitant with Na,K-ATPase α(1)-subunit mRNA expression. Effects of 1 nM C-peptide on Na,K-ATPase α(1)-subunit expression and/or ZEB DNA binding activity in HRTC were abolished by incubation with PKC or MEK1/2 inhibitors and ZEB siRNA silencing.Despite activation of ERK1/2 and PKC by hyperglycemia, a distinct pool of PKCs and ERK1/2 is involved in regulation of Na,K-ATPase expression and activity by C-peptide. Most likely C-peptide stimulates sodium pump expression via activation of ZEB, a transcription factor that has not been previously implicated in C-peptide-mediated signaling. Importantly, only physiological concentrations of C-peptide elicit this effect

    Using ecological and field survey data to establish a national list of the wild bee pollinators of crops

    Get PDF
    The importance of wild bees for crop pollination is well established, but less is known about which species contribute to service delivery to inform agricultural management, monitoring and conservation. Using sites in Great Britain as a case study, we use a novel qualitative approach combining ecological information and field survey data to establish a national list of crop pollinating bees for four economically important crops (apple, field bean, oilseed rape and strawberry). A traits data base was used to establish potential pollinators, and combined with field data to identify both dominant crop flower visiting bee species and other species that could be important crop pollinators, but which are not presently sampled in large numbers on crops flowers. Whilst we found evidence that a small number of common, generalist species make a disproportionate contribution to flower visits, many more species were identified as potential pollinators, including rare and specialist species. Furthermore, we found evidence of substantial variation in the bee communities of different crops. Establishing a national list of crop pollinators is important for practitioners and policy makers, allowing targeted management approaches for improved ecosystem services, conservation and species monitoring. Data can be used to make recommendations about how pollinator diversity could be promoted in agricultural landscapes. Our results suggest agri-environment schemes need to support a higher diversity of species than at present, notably of solitary bees. Management would also benefit from targeting specific species to enhance crop pollination services to particular crops. Whilst our study is focused upon Great Britain, our methodology can easily be applied to other countries, crops and groups of pollinating insects.LH was funded by NERC QMEE CDT. EJB was funded by a BBSRC Ph.D. studentship under grant BB/F016581/1. LB was was supported by the Scholarship Program of the German Federal Environmental Foundation (Deutsche Bundesstiftung Umwelt, DBU, AZ 20014/302). AJC was funded by the BBSRC and Syngenta UK as part of a case award Ph.D. (grant no. 1518739). AE was funded by the Swiss National Science Foundation (grant number 405940-115642). DG and A-MK were funded by grant PCIN2014-145-C02-02 (MinECo; EcoFruit project BiodivERsA-FACCE2014-74). MG was supported by Establishing a UK Pollinator Monitoring and Research Partnership (PMRP) a collaborative project funded by Defra, the Welsh and Scottish Governments, JNCC and project partners’. GAdG was funded via research projects BO-11-011.01-051 and BO-43-011.06-007, commissioned by the Dutch Ministry of Agriculture, Nature and Food Quality. DK was funded by the Dutch Ministry of Economic Affairs (BO-11-011.01-011). AK-H was funded by the NKFIH project (FK123813), the Bolyai János Fellowship of the MTA, the ÚNKP-19-4-SZIE-3 New National Excellence Program of the Ministry for Innovation and Technology, and together with RF by the Hungarian Scientific Research Fund OTKA 101940. MM was funded by Waitrose & Partners, Fruition PO, and the University of Worcester. MM was funded by grant INIA-RTA2013-00139-C03-01 (MinECo and FEDER). BBP and RFS were funded by the UK Natural Environment Research Council as part of Wessex BESS (ref. NE/J014680/1). NJV was funded by the Walloon Region (Belgium) Direction générale opérationnelle de l’Agriculture, des Ressources naturelles et de l’Environnement (DGO3) for the "Modèle permaculturel" project on biodiversity in micro-farms, FNRS/FWO joint programme EOS — Excellence Of Science CliPS: Climate change and its impact on Pollination Services (project 30947854)". CW was funded by the Deutsche Forschungsgemeinschaft (DFG) (Project number 405945293). BW was funded by the Natural Environment Research Council (NERC) under research programme NE/N018125/1 ASSIST – Achieving Sustainable Agricultural Systems www.assist.ceh.ac.uk. TB and TO are supported by BBSRC, NERC, ESRC and the Scottish Government under the Global Food Security Programme (Grant BB/R00580X/1)

    Multi-Organ Expression Profiling Uncovers a Gene Module in Coronary Artery Disease Involving Transendothelial Migration of Leukocytes and LIM Domain Binding 2: The Stockholm Atherosclerosis Gene Expression (STAGE) Study

    Get PDF
    Environmental exposures filtered through the genetic make-up of each individual alter the transcriptional repertoire in organs central to metabolic homeostasis, thereby affecting arterial lipid accumulation, inflammation, and the development of coronary artery disease (CAD). The primary aim of the Stockholm Atherosclerosis Gene Expression (STAGE) study was to determine whether there are functionally associated genes (rather than individual genes) important for CAD development. To this end, two-way clustering was used on 278 transcriptional profiles of liver, skeletal muscle, and visceral fat (n = 66/tissue) and atherosclerotic and unaffected arterial wall (n = 40/tissue) isolated from CAD patients during coronary artery bypass surgery. The first step, across all mRNA signals (n = 15,042/12,621 RefSeqs/genes) in each tissue, resulted in a total of 60 tissue clusters (n = 3958 genes). In the second step (performed within tissue clusters), one atherosclerotic lesion (n = 49/48) and one visceral fat (n = 59) cluster segregated the patients into two groups that differed in the extent of coronary stenosis (P = 0.008 and P = 0.00015). The associations of these clusters with coronary atherosclerosis were validated by analyzing carotid atherosclerosis expression profiles. Remarkably, in one cluster (n = 55/54) relating to carotid stenosis (P = 0.04), 27 genes in the two clusters relating to coronary stenosis were confirmed (n = 16/17, P<10−27and−30). Genes in the transendothelial migration of leukocytes (TEML) pathway were overrepresented in all three clusters, referred to as the atherosclerosis module (A-module). In a second validation step, using three independent cohorts, the A-module was found to be genetically enriched with CAD risk by 1.8-fold (P<0.004). The transcription co-factor LIM domain binding 2 (LDB2) was identified as a potential high-hierarchy regulator of the A-module, a notion supported by subnetwork analysis, by cellular and lesion expression of LDB2, and by the expression of 13 TEML genes in Ldb2–deficient arterial wall. Thus, the A-module appears to be important for atherosclerosis development and, together with LDB2, merits further attention in CAD research

    The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts

    Get PDF
    Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species’ threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project – and avert – future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups – including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems – www.predicts.org.uk). We make site-level summary data available alongside this article. The full database will be publicly available in 2015

    Protective nets reduce pollen flow in blueberry orchards

    No full text
    Protective covers are commonly employed in agricultural systems to reduce the impacts of extreme weather events, pest species and to control the environmental conditions in which crop plants are grown. As protected cropping systems are expanding rapidly, there is an urgent need to better understand how variations in netting practices might impact pollination service delivery by wild and managed insects to pollinator dependent crops. We used southern highbush blueberry (Vaccinium corymbosum L. interspecific hybrid) crops to investigate (i) how variations in protected cropping structures (fully netted, partially netted and unnetted blocks) influence the amount and composition of pollen deposited on crop stigmas; (ii) to what extent blueberry floral abundance and plant richness in remnant vegetation influence pollen composition on crop stigmas; and (iii) the difference between stigmatic pollen load composition in the middle and at the edge of crop blocks. We collected data from 15 field blocks of 6 different cultivars distributed on 10 farms. We collected blueberry stigmas to analyse the pollen load and measured blueberry floral abundance and richness of flowering plant taxa in remnant vegetation every two weeks. Our results indicate that blueberry pollen abundance on stigmas was reduced by up to 81% under full netting and 36% by partial netting. On blueberry stigmas, we identified a total of 31 morphospecies of non-blueberry pollen from 20 plant families. There was no relationship between blueberry stigmatic pollen loads and blueberry floral abundance. Moreover, the composition of non-blueberry pollen on stigmas differed between blueberry blocks under different netting categories. However, there was no relationship between plant taxa present in the surrounding remnant vegetation of each block and the pollen load on the stigmas of each block. Combining all netting treatments, stigmas located at the edge of the blocks received a greater amount of both conspecific (5% more) and heterospecific (40% more) pollen grains than those within the middle of blocks. Pollen flow in fields is reduced under netting structures as well as in the middle of blocks. Reduced blueberry pollen flow under nets may be detrimental to fruit yield and quality for some varieties of pollinator dependent crops, particularly those that are self-incompatible
    corecore